
Row reduction and Gaussian elimination 

 
Since the textbook, Linear Algebra Done Right [sic], gives absolutely no specific information 
about the fundamentally important notion of Gaussian elimination but cites it as a means for 
doing computations with examples, it is necessary to post some more specific information about 
this concept.  The excerpt on the following pages is taken from Petersen, Linear Algebra.  
Unfortunately, Petersen does not mention the term “Gaussian elimination” so we need to 
explain what this means in the context of his book:  The goal of the procedure is to find all 
solutions for a system of m linear equations expressible in the form  AX = 0, where  A  is an  
m × n  matrix of coefficients and  X  is an  n × 1  matrix of unknowns.  This is equivalent to 
finding the kernel of the linear transformation sending  X  to  AX,  and Gaussian elimination is 
another name for (1)  putting the matrix  A  into row reduced echelon form as in Petersen, (2)  
reading off a basis for the kernel as in the last three and first five lines of pages 68 and 69.  In 
particular, if we define the pivot coordinates to be those which correspond to the leading entries 
of the nonzero rows (the columns  j(1)  etc. in the passage from the book), then the solutions 
are given by allowing the non – pivot coordinates to vary independently and using the equations 
from the row  reduced echelon form to compute the pivot coordinates.  For example, if we have 
the   3 × 5  row reduced echelon matrix with entries 
 

1 0 0 2 3 
0 0 1 4 5 

 
then the pivot columns are columns 1 and 3, the space of solutions is 3 – dimensional, and a 
basis for the space of solutions is given by the following three vectors: 
 

(  0, 1,  0, 0, 0) 
 

( -2, 0, -4, 1, 0) 
 

( -3, 0, -5, 0, 1) 
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(9) If x1; :::; xk are linearly dependent, then L (x1) ; :::; L (xk) are linearly de-
pendent.

(10) If L (x1) ; :::; L (xk) are linearly independent, then x1; :::; xk are linearly
independent.

(11) Let A 2 Matn�m (F) and assume that y1; :::; ym 2 V
�

y1 � � � ym
�

=
�

x1 � � � xn
�

A

where x1; :::; xn form a basis for V:
(a) Show that y1; :::; ym span V if and only if A has rank n: Conclude

that m � n:
(b) Show that y1; :::; ym are linearly independent if and only if ker (A) =

f0g : Conclude that m � n:
(c) Show that y1; :::; ym form a basis for V if and only if A is invertible.

Conclude that m = n:

13. Row Reduction

In this section we give a brief and rigorous outline of the standard procedures
involved in solving systems of linear equations. The goal in the context of what
we have already learned is to �nd a way of computing the image and kernel of a
linear map that is represented by a matrix. Along the way we shall reprove that
the dimension is well-de�ned as well as the dimension formula for linear maps.

The usual way of writing n equations with m variables is

a11x1 + � � �+ a1mxm = b1
...

...
...

an1x1 + � � �+ anmxm = bn

where the variables are x1; :::; xm. The goal is to understand for which choices of
constants aij and bi such systems can be solved and then list all the solutions. To
conform to our already speci�ed notation we change the system so that it looks like

�11�1 + � � �+ �1m�m = �1
...

...
...

�n1�1 + � � �+ �nm�m = �n

In matrix form this becomes
2

6

4

�11 � � � �1m
...

. . .
...

�n1 � � � �nm

3

7

5

2

6

4

�1
...
�n

3

7

5
=

2

6

4

�1
...
�n

3

7

5

and can be abbreviated to

Ax = b:

As such we can easily use the more abstract language of linear algebra to address
some general points.

Proposition 3. Let L : V !W be a linear map.

(1) L (x) = b can be solved if and only if b 2 im (L) :
(2) If L (x0) = b and x 2 ker (L) ; then L (x+ x0) = b:
(3) If L (x0) = b and L (x1) = b; then x0 � x1 2 ker (L) :
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Therefore, we can �nd all solutions to L (x) = b provided we can �nd the kernel
ker (L) and just one solution x0: Note that the kernel consists of the solutions to
what we call the homogeneous system: L (x) = 0:

With this behind us we are now ready to address the issue of how to make the
necessary calculations that allow us to �nd a solution to

2

6

4

�11 � � � �1m
...

. . .
...

�n1 � � � �nm

3

7

5

2

6

4

�1
...
�n

3

7

5
=

2

6

4

�1
...
�n

3

7

5

The usual method is through elementary row operations. To keep things more
conceptual think of the actual linear equations

�11�1 + � � �+ �1m�m = �1
...

...
...

�n1�1 + � � �+ �nm�m = �n

and observe that we can perform the following three operations without changing
the solutions to the equations:

(1) Interchanging equations (or rows).
(2) Adding a multiple of an equation (or row) to a di¤erent equation (or row).
(3) Multiplying an equation (or row) by a nonzero number.

Using these operations one can put the system in row echelon form. This is
most easily done by considering the augmented matrix, where the variables have
disappeared

2

6

4

�11 � � � �1m
...

. . .
...

�n1 � � � �nm

�

�

�

�

�

�

�

�1
...
�n

3

7

5

and then performing the above operations, now on rows, until it takes the special
form where

(1) The �rst nonzero entry in each row is normalized to be 1. This is also
called the leading 1 for the row.

(2) The leading 1s appear in echelon form, i.e., as we move down along the
rows the leading 1s will appear farther to the right.

The method by which we put a matrix into row echelon form is called Gauss
elimination. Having put the system into this simple form one can then solve it by
starting from the last row or equation.

When doing the process on A itself we denote the resulting row echelon matrix
by Aref : There are many ways of doing row reductions so as to come up with a row
echelon form for A and it is quite likely that one ends up with di¤erent echelon
forms. To see why consider

A =

2

4

1 1 0
0 1 1
0 0 1

3

5 :
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This matrix is clearly in row echelon form. However we can subtract the second
row from the �rst row to obtain a new matrix which is still in row echelon form:

2

4

1 0 �1
0 1 1
0 0 1

3

5

It is now possible to use the last row to arrive at
2

4

1 0 0
0 1 0
0 0 1

3

5 :

The important information about Aref is the placement of the leading 1 in each
row and this placement will always be the same for any row echelon form. To
get a unique row echelon form we need to reduce the matrix using Gauss-Jordan
elimination. This process is what we just performed on the above matrix A: The
idea is to �rst arrive at some row echelon form Aref and then starting with the
second row eliminate all entries above the leading 1, this is then repeated with row
three, etc. In this way we end up with a matrix that is still in row echelon form,
but also has the property that all entries below and above the leading 1 in each
row are zero. We say that such a matrix is in reduced row echelon form. If we start
with a matrix A, then the resulting reduced row echelon form is denoted Arref : For
example, if we have

Aref =

2

6

6

4

0 1 4 1 0 3 �1
0 0 0 1 �2 5 �4
0 0 0 0 0 0 1
0 0 0 0 0 0 0

3

7

7

5

;

then we can reduce further to get a new reduced row echelon form

Arref =

2

6

6

4

0 1 4 0 2 �2 0
0 0 0 1 �2 5 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

3

7

7

5

:

The row echelon form and reduced row echelon form of a matrix can more
abstractly be characterized as follows. Suppose that we have an n � m matrix
A =

�

x1 � � � xm
�

; where x1; :::; xm 2 F
n correspond to the columns of A: Let

e1; :::; en 2 F
n be the canonical basis. The matrix is in row echelon form if we can

�nd 1 � j1 < � � � < jk � m; where k � n, such that

xjs = es +
X

i<s

�ijsei

for s = 1; :::; k. For all other indices j we have

xj = 0; if j < j1;

xj 2 span fe1; :::; esg ; if js < j < js+1;

xj 2 span fe1; :::; ekg ; if jk < j:

Moreover, the matrix is in reduced row echelon form if in addition we assume that

xjs = es:
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Below we shall prove that the reduced row echelon form of a matrix is unique,
but before doing so it is convenient to reinterpret the row operations as matrix
multiplication.

Let A 2 Matn�m (F) be the matrix we wish to row reduce. The row operations
we have described can be accomplished by multiplying A by certain invertible n�n
matrices on the left. These matrices are called elementary matrices. The de�ne
these matrices we use the standard basis matrices Ekl where the kl entry is 1 while
all other entries are 0. The matrix product EklA is a matrix whose k

th row is the
lth row of A and all other rows vanish.

(1) Interchanging rows k and l: This can be accomplished by the matrix
multiplication IklA; where

Ikl = Ekl + Elk +
X

i 6=k;l

Eii

= Ekl + Elk + 1Fn � Ekk � Ell

or in other words the ij entries �ij in Ikl satisfy �kl = �lk = 1; �ii = 1
if i 6= k; l; and �ij = 0 otherwise. Note that Ikl = Ilk and IklIlk = 1Fn .
Thus Ikl is invertible.

(2) Multiplying row l by � 2 F and adding it to row k 6= l: This can be
accomplished via Rkl (�)A; where

Rkl (�) = 1Fn + �Ekl

or in other words the ij entries �ij in Rkl (�) look like �ii = 1; �kl = �;
and �ij = 0 otherwise. This time we note that Rkl (�)Rkl (��) = 1Fn :

(3) Multiplying row k by � 2 F�f0g : This can be accomplished byMk (�)A;
where

Mk (�) = �Ekk +
X

i 6=k

Eii

= 1Fn + (�� 1)Ekk

or in other words the ij entries �ij of Mk (�) are �kk = �, �ii = 1 if
i 6= k; and �ij = 0 otherwise. Clearly Mk (�)Mk

�

��1
�

= 1Fn :

Performing row reductions on A is now the same as doing a matrix multipli-
cation PA; where P 2 Matn�n (F) is a product of the elementary matrices. Note
that such P are invertible and that P�1 is also a product of elementary matrices.
The elementary 2� 2 matrices look like.

I12 =

�

0 1
1 0

�

;

R12 (�) =

�

1 �

0 1

�

;

R21 (�) =

�

1 0
� 1

�

;

M1 (�) =

�

� 0
0 1

�

;

M2 (�) =

�

1 0
0 �

�

:
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If we multiply these matrices onto A from the left we obtain the desired operations:

I12A =

�

0 1
1 0

� �

�11 �12
�21 �22

�

=

�

�21 �22
�11 �12

�

R12 (�)A =

�

1 �

0 1

� �

�11 �12
�21 �22

�

=

�

�11 + ��21 �12 + ��22
�21 �22

�

R21 (�)A =

�

1 0
� 1

� �

�11 �12
�21 �22

�

=

�

�11 �12
��11 + �21 ��12 + �22

�

M1 (�)A =

�

� 0
0 1

� �

�11 �12
�21 �22

�

=

�

��11 ��12
�21 �22

�

M2 (�)A =

�

1 0
0 �

� �

�11 �12
�21 �22

�

=

�

�11 �12
��21 ��22

�

We can now move on to the important result mentioned above.

Theorem 8. (Uniqueness of Reduced Row Echelon Form) The reduced row
echelon form of an n�m matrix is unique.

Proof. Let A 2 Matn�m (F) and assume that we have two reduced row eche-
lon forms

PA =
�

x1 � � � xm
�

;

QA =
�

y1 � � � ym
�

;

where P;Q 2 Matn�n (F) are invertible. In particular, we have that

R
�

x1 � � � xm
�

=
�

y1 � � � ym
�

where R 2 Matn�n (F) is invertible. We shall show that xi = yi; i = 1; :::;m by
induction on n:

First observe that if A = 0; then there is nothing to prove. If A 6= 0; then both
of the reduced row echelon forms have to be nontrivial. Then we have that

xi1 = e1;

xi = 0 for i < i1

and

yj1 = e1;

yi = 0 for i < j1:

The relationship Rxi = yi shows that yi = 0 if xi = 0. Thus j1 � i1: Similarly
the relationship yi = R

�1xi shows that xi = 0 if yi = 0: Hence also j1 � i1: Thus
i1 = j1 and xi1 = e1 = yj1 . This implies that Re1 = e1 and R

�1e1 = e1: In other
words

R =

�

1 0
0 R0

�

where R0 2 Mat(n�1)�(n�1) (F) is invertible. In the special case where n = 1; we are
�nished as we have shown that R = [1] in that case. This anchors our induction.
We can now assume that the induction hypothesis is that all (n� 1)�m matrices
have unique reduced row echelon forms.
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If we de�ne x0i, y
0
i 2 F

n�1 as the last n� 1 entries in xi and yi, i.e.,

xi =

�

�1i
x0i

�

;

yi =

�

�1i
y0i

�

;

then we see that
�

x01 � � � x0m
�

and
�

y01 � � � y0m
�

are still in reduced row
echelon form. Moreover, the relationship

�

y1 � � � ym
�

= R
�

x1 � � � xm
�

now implies that
�

�11 � � � �1m
y01 � � � y0m

�

=
�

y1 � � � ym
�

= R
�

x1 � � � xm
�

=

�

1 0
0 R0

� �

�11 � � � �1m
x01 � � � x0m

�

=

�

�11 � � � �1m
R0x01 � � � R0x0m

�

Thus
R0
�

x01 � � � x0m
�

=
�

y01 � � � y0m
�

:

The induction hypothesis now implies that x0i = y
0
i: This combined with

�

y1 � � � ym
�

=

�

�11 � � � �1m
y01 � � � y0m

�

=

�

�11 � � � �1m
R0x01 � � � R0x0m

�

=
�

x1 � � � xm
�

shows that xi = yi for all i = 1; :::;m: �

We are now ready to explain how the reduced row echelon form can be used to
identify the kernel and image of a matrix. Along the way we shall reprove some of
our earlier results. Suppose that A 2 Matn�m (F) and

PA = Arref

=
�

x1 � � � xm
�

;

where we can �nd 1 � j1 < � � � < jk � m; such that

xjs = es for i = 1; :::; k

xj = 0; if j < j1;

xj 2 span fe1; :::; esg ; if js < j < js+1;

xj 2 span fe1; :::; ekg ; if jk < j:

Finally let i1 < � � � < im�k be the indices complementary to j1; ::; jk; i.e.,

f1; :::;mg = fj1; ::; jkg [ fi1; :::; im�kg :

We are �rst going to study the kernel of A: Since P is invertible we see that Ax = 0
if and only if Arrefx = 0: Thus we need only study the equation Arrefx = 0: If we
let x = (�1; :::; �m) ; then the nature of the equations Arrefx = 0 will tell us that
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(�1; :::; �m) are uniquely determined by �i1 ; :::; �im�k
: To see why this is we note

that if we have Arref = [�ij ] ; then the reduced row echelon form tells us that

�j1 + �1i1�i1 + � � �+ �1im�k
�im�k

= 0;

...

�jk + �ki1�i1 + � � �+ �kim�k
�im�k

= 0;

Thus �j1 ; :::; �jk have explicit formulas in terms of �i1 ; :::; �im�k
: We actually get a

bit more information: If we take (�1; :::; �m�k) 2 F
m�k and construct the unique

solution x = (�1; :::; �m) such that �i1 = �1; :::; �im�k
= �m�k then we have actually

constructed a map

F
m�k ! ker (Arref)

(�1; :::; �m�k) ! (�1; :::; �m) :

We have just seen that this map is onto. The construction also gives us explicit
formulas for �j1 ; :::; �jk that are linear in �i1 = �1; :::; �im�k

= �m�k: Thus the map

is linear. Finally if (�1; :::; �m) = 0; then we clearly also have (�1; :::; �m�k) = 0; so
the map is one-to-one. All in all it is a linear isomorphism.

This leads us to the following result.

Theorem 9. (Uniqueness of Dimension) Let A 2 Matn�m (F) ; if n < m; then
ker (A) 6= f0g : Consequently Fn and Fm are not isomorphic.

Proof. Using the above notation we have k � n < m: Thus m � k > 0:
From what we just saw this implies ker (A) = ker (Arref) 6= f0g. In particular
it is not possible for A to be invertible. This shows that Fn and Fm cannot be
isomorphic. �

Having now shown that the dimension of a vector space is well-de�ned we can
then establish the dimension formula. Part of the proof of this theorem is to identify
a basis for the image of a matrix. Note that this proof does not depend on the result
that subspaces of �nite dimensional vector spaces are �nite dimensional. In fact for
the subspaces under consideration, namely, the kernel and image, it is part of the
proof to show that they are �nite dimensional.

Theorem 10. (The Dimension Formula) Let A 2 Matn�m (F) ; then

m = dim (ker (A)) + dim (im (A)) :

Proof. We use the above notation. We just saw that dim (ker (A)) = m� k;
so it remains to check why dim (im (A)) = k?

If

A =
�

y1 � � � ym
�

;

then we have yi = P
�1xi; where

Arref =
�

x1 � � � xm
�

:

We know that each

xj 2 span fe1; :::; ekg = span fxj1 ; :::; xjkg ;

thus we have that

yj 2 span fyj1 ; :::; yjkg :
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Moreover, as P is invertible we see that yj1 ; :::; yjk must be linearly independent
as e1; :::; ek are linearly independent. This proves that yj1 ; :::; yjk form a basis for
im (A) : �

Corollary 9. (Subspace Theorem) Let M � F
n be a subspace. Then M is

�nite dimensional and dim (M) � n:

Proof. Recall from �Subspaces� that every subspace M � F
n has a com-

plement. This means that we can construct a projection as in �Linear Maps and
Subspaces� that has M as kernel. This means that M is the kernel for some
A 2 Matn�n (F). Thus the previous theorem implies the claim. �

It might help to see an example of how the above constructions work.

Example 43. Suppose that we have a 4� 7 matrix

A =

2

6

6

4

0 1 4 1 0 3 �1
0 0 0 1 �2 5 �4
0 0 0 0 0 0 1
0 0 0 0 0 0 1

3

7

7

5

Then

Arref =

2

6

6

4

0 1 4 0 2 �2 0
0 0 0 1 �2 5 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

3

7

7

5

Thus j1 = 2; j2 = 4; and j3 = 7: The complementary indices are i1 = 1; i2 = 3;
i3 = 5; and i4 = 6: Hence

im (A) = span

8

>

>

<

>

>

:

2

6

6

4

1
0
0
0

3

7

7

5

;

2

6

6

4

1
1
0
0

3

7

7

5

;

2

6

6

4

�1
�4
1
1

3

7

7

5

9

>

>

=

>

>

;

and

ker (A) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

2

6

6

6

6

6

6

6

6

4

�1
�4�3 � 2�5 + 2�6

�3
2�5 � 5�6

�5
�6
0

3

7

7

7

7

7

7

7

7

5

: �1; �3; �5; �6 2 F

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

:

Our method for �nding a basis for the image of a matrix leads us to a di¤erent
proof of the rank theorem. The column rank of a matrix is simply the dimension
of the image, in other words, the maximal number of linearly independent column
vectors. Similarly the row rank is the maximal number of linearly independent
rows. In other words, the row rank is the dimension of the image of the transposed
matrix.

Theorem 11. (The Rank Theorem) Any n �m matrix has the property that

the row rank is equal to the column rank.
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Proof. We just saw that the column rank for A and Arref are the same and
equal to k with the above notation. Because of the row operations we use, it is clear
that the rows of Arref are linear combinations of the rows of A: As the process can
be reversed the rows of A are also linear combinations of the rows Arref : Hence A
and Arref also have the same row rank. Now Arref has k linearly independent rows
and must therefore have row rank k: �

Using the rank theorem together with the dimension formula leads to an inter-
esting corollary.

Corollary 10. Let A 2 Matn�n (F) : Then

dim (ker (A)) = dim
�

ker
�

At
��

;

where At 2 Matn�n (F) is the transpose of A:

We are now going to clarify what type of matrices P occur when we do the
row reduction to obtain PA = Arref : If we have an n � n matrix A with trivial
kernel, then it must follow that Arref = 1Fn : Therefore, if we perform Gauss-Jordan
elimination on the augmented matrix

Aj1Fn ;

then we end up with an answer that looks like

1Fn jB:

The matrix B evidently satis�es AB = 1Fn : To be sure that this is the inverse we
must also check that BA = 1Fn : However, we know that A has an inverse A

�1: If
we multiply the equation AB = 1Fn by A

�1 on the left we obtain B = A�1: This
settles the uncertainty.

The space of all invertible n�n matrices is called the general linear group and
is denoted by:

Gln (F) =
�

A 2 Matn�n (F) : 9 A
�1 2 Matn�n (F) with AA

�1 = A�1A = 1Fn
	

:

This space is a so called group. This means that we have a set G and a product
operation G�G! G denoted by (g; h)! gh: This product operation must satisfy

(1) Associativity: (g1g2) g3 = g1 (g2g3) :
(2) Existence of a unit e 2 G such that eg = ge = g:
(3) Existence of inverses: For each g 2 G there is g�1 2 G such that gg�1 =

g�1g = e:

If we use matrix multiplication in Gln (F) and 1Fn as the unit, then it is clear
that Gln (F) is a group. Note that we don�t assume that the product operation in
a group is commutative, and indeed it isn�t commutative in Gln (F) unless n = 1:

If a possibly in�nite subset S � G of a group has the property that any element
in G can be written as a product of elements in S; then we say that S generates G:

We can now prove

Theorem 12. The general linear group Gln (F) is generated by the elementary
matrices Ikl; Rkl (�) ; and Mk (�).

Proof. We already observed that Ikl; Rkl (�) ; and Mk (�) are invertible and
hence form a subset in Gln (F) : Let A 2 Gln (F) ; then we know that also A

�1 2
Gln (F) : Now observe that we can �nd P 2 Gln (F) as a product of elementary ma-
trices such that PA�1 = 1Fn : This was the content of the Gauss-Jordan elimination
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process for �nding the inverse of a matrix. This means that P = A and hence A is
a product of elementary matrices. �

As a corollary we have:

Corollary 11. Let A 2 Matn�n (F) ; then it is possible to �nd P 2 Gln (F)
such that PA is upper triangular:

PA =

2

6

6

6

4

�11 �12 � � � �1n
0 �22 � � � �2n
...

...
. . .

...

0 0 � � � �nn

3

7

7

7

5

Moreover

ker (A) = ker (PA)

and ker (A) 6= f0g if and only if the product of the diagonal elements in PA is zero:

�11�22 � � ��nn = 0:

We are now ready to see how the process of calculating Arref using row opera-
tions can be interpreted as a change of basis in the image space.

Two matrices A;B 2 Matn�m (F) are said to be row equivalent if we can �nd
P 2 Gln (F) such that A = PB: Thus row equivalent matrices are the matrices
that can be obtained from each other via row operations. We can also think of row
equivalent matrices as being di¤erent matrix representations of the same linear map
with respect to di¤erent bases in Fn: To see this consider a linear map L : Fm ! F

n

that has matrix representation A with respect to the standard bases. If we perform
a change of basis in Fn from the standard basis f1; :::; fn to a basis y1; :::; yn such
that

�

y1 � � � yn
�

=
�

f1 � � � fn
�

P;

i.e., the columns of P are regarded as a new basis for Fn; then B = P�1A is simply
the matrix representation for L : Fm ! F

n when we have changed the basis in Fn

according to P: This information can be encoded in the diagram

F
m A

�! F
n

# 1Fm # 1Fn

F
m L

�! F
n

" 1Fm " P

F
m B

�! F
n

When we consider abstract matrices rather than systems of equations we could
equally well have performed column operations. This is accomplished by multiply-
ing the elementary matrices on the right rather than the left. We can see explicitly
what happens in the 2� 2 case:

AI12 =

�

�11 �12
�21 �22

� �

0 1
1 0

�

=

�

�12 �11
�22 �21

�

AR12 (�) =

�

�11 �12
�21 �22

� �

1 �

0 1

�

=

�

�11 ��11 + �12
�21 ��21 + �22

�

AR21 (�) =

�

�11 �12
�21 �22

� �

1 0
� 1

�

=

�

�11 + ��12 �12
�21 + ��22 �22

�
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AM1 (�) =

�

�11 �12
�21 �22

� �

� 0
0 1

�

=

�

��11 �12
��21 �22

�

AM2 (�) =

�

�11 �12
�21 �22

� �

1 0
0 �

�

=

�

�11 ��12
�21 ��22

�

The only important and slightly confusing thing to be aware of is that, while Rkl (�)
as a row operation multiplies row l by � and then adds it to row k; it now multiplies
column k by � and adds it to column l as a column operation. This is because AEkl
is the matric whose lth column is the kth column of A and whose other columns
vanish.

Two matrices A;B 2 Matn�m (F) are said to be column equivalent if A = BQ
for some Q 2 Glm (F) : According to the above interpretation this corresponds to a
change of basis in the domain space Fm:

More generally we say that A;B 2 Matn�m (F) are equivalent if A = PBQ;

where P 2 Gln (F) and Q 2 Glm (F) : The diagram for the change of basis then
looks like

F
m A

�! F
n

# 1Fm # 1Fn

F
m L

�! F
n

" Q�1 " P

F
m B

�! F
n

In this way we see that two matrices are equivalent if and only if they are matrix
representations for the same linear map. Recall from the previous section that any
linear map between �nite dimensional spaces always has a matrix representation of
the form

2

6

6

6

6

6

6

6

6

6

4

1 � � � 0 0
. . .

0 � � � 1
...

...
0 0

...
...

. . .
...

0 � � � 0 0 � � � 0

3

7

7

7

7

7

7

7

7

7

5

where there are k ones in the diagonal if the linear map has rank k: This implies

Corollary 12. (Characterization of Equivalent Matrices) A;B 2 Matn�m (F)
are equivalent if and only if they have the same rank. Moreover any matrix of rank

k is equivalent to a matrix that has k ones on the diagonal and zeros elsewhere.

13.1. Exercises.

(1) Find bases for kernel and image for the following matrices.

(a)

2

4

1 3 5 1
2 0 6 0
0 1 7 2

3

5

(b)

2

4

1 2
0 3
1 4

3

5
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(c)

2

4

1 0 1
0 1 0
1 0 1

3

5

(d)

2

6

6

6

4

�11 0 � � � 0
�21 �22 � � � 0
...

...
. . .

...
�n1 �n2 � � � �nn

3

7

7

7

5

In this case it will be necessary to discuss

whether or not �ii = 0 for each i = 1; :::; n:
(2) Find A�1 for each of the following matrices.

(a)

2

6

6

4

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

3

7

7

5

(b)

2

6

6

4

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

3

7

7

5

(c)

2

6

6

4

0 1 0 1
1 0 0 0
0 0 1 0
0 0 0 1

3

7

7

5

(3) Let A 2 Matn�m (F) : Show that we can �nd P 2 Gln (F) that is a product
of matrices of the types Iij and Rij (�) such that PA is upper triangular.

(4) Let A = Matn�n (F) :We say that A has an LU decomposition if A = LU;
where L is lower triangular with 1s on the diagonal and U is upper trian-
gular. Show that A has an LU decomposition if all the leading principal
minors are invertible. The leading principal k � k minor is the k � k
submatrix gotten from A by eliminating the last n� k rows and columns.
Hint: Do Gauss elimination using only Rij (�).

(5) Assume that A = PB;where P 2 Gln (F)
(a) Show that ker (A) = ker (B) :
(b) Show that if the column vectors yi1 ; :::; yik of B form a basis for

im (B) ; then the corresponding column vectors xi1 ; :::; xik for A form
a basis for im (A) :

(6) Let A 2 Matn�m (F) :
(a) Show that the m�m elementary matrices Iij ; Rij (�) ;Mi (�) when

multiplied on the right correspond to column operations.
(b) Show that we can �nd Q 2 Glm (F) such that AQ is lower triangular.
(c) Use this to conclude that im (A) = im (AQ) and describe a basis for

im (A) :
(d) Use Q to �nd a basis for ker (A) given a basis for ker (AQ) and

describe how you select a basis for ker (AQ) :
(7) Let A 2 Matn�n (F) be upper triangular.

(a) Show that dim (ker (A)) � number of zero entries on the diagonal.
(b) Give an example where dim (ker (A)) < number of zero entries on the

diagonal.
(8) In this exercise you are asked to show some relationships between the

elementary matrices.
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(a) Show that Mi (�) = IijMj (�) Iji:
(b) Show that Rij (�) =Mj

�

��1
�

Rij (1)Mj (�) :
(c) Show that Iij = Rij (�1)Rji (1)Rij (�1)Mj (�1) :
(d) Show that Rkl (�) = IkiIljRij (�) IjlIik; where in case i = k or j = k

we interpret Ikk = Ill = 1Fn :
(9) A matrix A 2 Gln (F) is a permutation matrix if Ae1 = e�(i) for some

bijective map (permutation)

� : f1; :::; ng ! f1; :::; ng :

(a) Show that

A =
n
X

i=1

E�(i)i

(b) Show that A is a permutation matrix if and only if A has exactly
one entry in each row and column which is 1 and all other entries are
zero.

(c) Show that A is a permutation matrix if and only if it is a product of
the elementary matrices Iij :

(10) Assume that we have two �elds F � L; such as R � C; and consider
A 2 Matn�m (F) : Let AL 2 Matn�m (L) be the matrix A thought of as
an element of Matn�m (L) : Show that dimF (ker (A)) = dimL (ker (AL))
and dimF (im (A)) = dimL (im (AL)). Hint: Show that A and AL have the
same reduced row echelon form.

(11) Given �ij 2 F for i < j and i; j = 1; :::; n we wish to solve

�i
�j
= �ij :

(a) Show that this system either has no solutions or in�nitely many so-
lutions. Hint: try n = 2; 3 �rst.

(b) Give conditions on �ij that guarantee an in�nite number of solutions.
(c) Rearrange this system into a linear system and explain the above

results.

14. Dual Spaces�

For a vector space V over F we de�ne the dual vector space V 0 = hom (V;F) as
the set of linear functions on V: One often sees the notation V � for V 0: However,
we have reserved V � for the conjugate vector space to a complex vector space.
When V is �nite dimensional we know that V and V 0 have the same dimension. In
this section we shall see how the dual vector space can be used as a substitute for
an inner product on V in case V doesn�t come with a natural inner product (see
chapter 3 for the theory on inner product spaces).

We have a natural dual pairing V �V 0 ! F de�ned by (x; f) = f (x) for x 2 V
and f 2 V 0: We are going to think of (x; f) as a sort of inner product between x
and f: Using this notation will enable us to make the theory virtually the same
as for inner product spaces. Observe that this pairing is linear in both variables.
Linearity in the �rst variable is a consequence of using linear functions in the second


