Solutions for exercises5A.pdf

1. Suppose that $z=W_{1}+W_{2}$ and write $z=x_{1}+x_{2}$ where $x_{i} \in W_{i}$. Since each W_{i} is T-invariant we have $T\left(x_{1}\right) \in W_{1}$ and $T\left(x_{2}\right) \in W_{2}$. Therefore

$$
T(z)=T\left(x_{1}+x_{2}\right)=T\left(x_{1}\right)+T\left(x_{2}\right)
$$

lies in $W_{1}+W_{2}$, and hence the latter is T-invariant.
2. First, follow the hint in exercises5A.pdf; we want to show that if $T(v)=c v$ then $T(S(v))=c S(v)$. But $S T=T S$ implies

$$
T S(v)=S T(v)=S(c v)=c S(v)
$$

so the claim is true. Similarly, if $S(v)=d v$ then $S(T(v))=d T(v)$.
Next, follow the hint in aabUpdate02.132.s18.pdf. Let V_{c} be the eigenspace of T corresponding to the eigenvalue T. Then $y \in V_{c}$ can be written as a sum of eigenvectors $x_{1}+\ldots+x_{k}$ for S such that the associated eigenvalues (with respect to S) are distinct. We want to prove by induction that each x_{j} lies in V_{c}.

If $k=1$ there is nothing to prove. Suppose that we know the statement is true for $k-1 \geq 1$. Let d_{j} is the associated eigenvalue for x_{j} with respect to S. Then by the first paragraph we know that $S(y)=d_{1} x_{1}+\ldots+d_{k} x_{k}$ lies in V_{c}. On the other hand, we also know that $d_{k} y=d_{k} x_{1}+\ldots+d_{k} x_{k}$ lies in V_{c}. If we now subtract the second vector from the first, we find that

$$
\left(d_{1}-d_{k}\right) x_{1}+\ldots+\left(d_{k-1}-d_{k}\right) x_{k-1} \in V_{c} .
$$

Since the eigenvalues d_{j} are distinct, it follows that the coefficieints $d_{j}-d_{k}$ are all nonzero and hence the summands are eigenvectors for S with distinct eigenvalues. We can now apply the induction hypothesis to conclude that each $\left(d_{j}-d_{k}\right) x_{j}$ is in V_{c}, and since the coefficients are all nonzero we can also conclude that each x_{j} lies in V_{c}. Therefore it follows that

$$
x_{k}=x-\sum_{j<k} x_{j}
$$

also belongs to V_{c}, completing the proof of the inductive step.
Finally, the preceding implies that the intersections of the eigenspaces $V_{c, T}$ for T and $V_{d, S}$ for S give a spanning set for V; note that these subspaces are invariant under both S and T, with T sending a vector $z \in V_{c, T} \cap V_{d, S}$ to $c z$ abd S sending z to $d z$. Furthermore, if $(c, d) \neq\left(c^{\prime}, d^{\prime}\right)$, the usual arguments show that the intersection of the subspaces $V_{c, T} \cap V_{d, S}$ and $V_{c^{\prime}, T} \cap V_{d^{\prime}, S}$ is always empty. Therefore V is a direct sum of these intersections, and it follows that we have simultaneously diagonalized S and T.
3. The eigenvalues of the triangular matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & 0 & 3
\end{array}\right)
$$

are 1, 2 and 3 . To find the associated eigenvectors we need to find the respective null spaces of the matrices $A-I, A-2 I$ and $A-3 I$:

$$
A-I=\left(\begin{array}{lll}
0 & 2 & 3 \\
0 & 1 & 3 \\
0 & 0 & 2
\end{array}\right), \quad A-2 I=\left(\begin{array}{ccc}
-1 & 2 & 3 \\
0 & 0 & 3 \\
0 & 0 & 1
\end{array}\right), \quad A-3 I=\left(\begin{array}{ccc}
-2 & 2 & 3 \\
0 & -1 & 3 \\
0 & 0 & 0
\end{array}\right)
$$

Direct computation shows that each of these null spaces is 1-dimensional, and spanning vectors are given by

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right), \quad \text { and } \quad A-3 I=\left(\begin{array}{l}
9 \\
6 \\
2
\end{array}\right)
$$

respectively. All nonzero multiples of these vectors are also eigenvectors.■
4. Once again, follow the hint. One renumbering which works is $y_{j}=x_{n-j}$ (in other words, writing the list of basis vectors in the reverse order).

