
Solutions for exercises5A.pdf

1. Suppose that z = W1 + W2 and write z = x1 + x2 where xi ∈ Wi. Since each Wi is
T -invariant we have T (x1) ∈ W1 and T (x2) ∈ W2. Therefore

T (z) = T (x1 + x2) = T (x1) + T (x2)

lies in W1 + W2, and hence the latter is T -invariant.

2. First, follow the hint in exercises5A.pdf; we want to show that if T (v) = cv then
T (S(v)) = cS(v). But ST = TS implies

TS(v) = ST (v) = S(cv) = cS(v)

so the claim is true. Similarly, if S(v) = dv then S(T (v)) = dT (v).

Next, follow the hint in aabUpdate02.132.s18.pdf. Let Vc be the eigenspace of T corre-
sponding to the eigenvalue T . Then y ∈ Vc can be written as a sum of eigenvectors x1 + ... + xk

for S such that the associated eigenvalues (with respect to S) are distinct. We want to prove by
induction that each xj lies in Vc.

If k = 1 there is nothing to prove. Suppose that we know the statement is true for k − 1 ≥ 1.
Let dj is the associated eigenvalue for xj with respect to S. Then by the first paragraph we know
that S(y) = d1x1+...+dkxk lies in Vc. On the other hand, we also know that dky = dkx1+...+dkxk

lies in Vc. If we now subtract the second vector from the first, we find that

(d1 − dk)x1 + ... + (dk−1 − dk)xk−1 ∈ Vc .

Since the eigenvalues dj are distinct, it follows that the coefficieints dj−dk are all nonzero and hence
the summands are eigenvectors for S with distinct eigenvalues. We can now apply the induction
hypothesis to conclude that each (dj − dk)xj is in Vc, and since the coefficients are all nonzero we
can also conclude that each xj lies in Vc. Therefore it follows that

xk = x −
∑

j<k

xj

also belongs to Vc, completing the proof of the inductive step.

Finally, the preceding implies that the intersections of the eigenspaces Vc,T for T and Vd,S for
S give a spanning set for V ; note that these subspaces are invariant under both S and T , with T

sending a vector z ∈ Vc,T ∩ Vd,S to cz abd S sending z to dz. Furthermore, if (c, d) 6= (c′, d′), the
usual arguments show that the intersection of the subspaces Vc,T ∩ Vd,S and Vc′,T ∩ Vd′,S is always
empty. Therefore V is a direct sum of these intersections, and it follows that we have simultaneously
diagonalized S and T .

3. The eigenvalues of the triangular matrix

A =





1 2 3
0 2 3
0 0 3





1



are 1, 2 and 3. To find the associated eigenvectors we need to find the respective null spaces of the
matrices A − I, A − 2I and A − 3I:

A − I =





0 2 3
0 1 3
0 0 2



 , A − 2I =





−1 2 3
0 0 3
0 0 1



 , A − 3I =





−2 2 3
0 −1 3
0 0 0





Direct computation shows that each of these null spaces is 1-dimensional, and spanning vectors are
given by





1
0
0



 ,





2
1
0



 , and A − 3I =





9
6
2





respectively. All nonzero multiples of these vectors are also eigenvectors.

4. Once again, follow the hint. One renumbering which works is yj = xn−j (in other words,
writing the list of basis vectors in the reverse order).
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