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5.A.X1. We shall use the 2×2 determinant test for eigenvalues and then find the eigenvectors.

For the first matrix, the polynomial detA− tI is 5− 6t + t2 = (t− 1)(t− 5), so the eigenvalues
are 1 and 5. To compute the eigenvectors, we must find the null spaces of the following matrices:

A − I =

(

2 2
2 2

)

, A − 5I =

(

−2 2
2 −2

)

In the first case the null space is spanned by the column vector corresponding to (1,−1), while in
the second the null space is spanned by the column vector corresponding to (1, 1).

For the second matrix, the polynomial is detA − tI = 5 − 6t + t2 = (t − 1)(t − 5), so the
eigenvalues are again 1 and 5. To compute the eigenvectors, we must find the null spaces of the
following matrices:

A − I =

(

−1 −5
1 5

)

, A − 5I =

(

−5 −5
1 1

)

In the first case the null space is spanned by the column vector corresponding to (5,−1), while in
the second the null space is spanned by the column vector corresponding to (1,−1).

For the third matrix, the polynomial is detA − tI = 18 − 9t + t2 = (t − 3)(t − 6), so the
eigenvalues are 3 and 6. To compute the eigenvectors, we must find the null spaces of the following
matrices:

A − 3 =

(

5 5
−2 2

)

, A − 6I =

(

2 5
−2 −5

)

In the first case the null space is spanned by the column vector corresponding to (1,−1), while in
the second the null space is spanned by the column vector corresponding to (5,−2).

5.A.X2. The polynomial whose roots are eigenvalues is 1 − 2 cos θ + t2. By the Quadratic
Formula, this polynomial has no real roots if and only if cos2 θ− 1 < 0, or equivalently cos θ 6= ± 1.
The latter is true precisely when θ is not an integral multiple of π.

5.B.X1. Follow the hint, letting Wk be the subspace spanned by the first k ≥ 0 unit vectors;
by convention W0 = {0}. Then the linear transformation X → AX sends the krmth unit vector
into Wk−1 by our assumptions. Now if Y ∈ Wk, then Y is a linear combination of the first k

unit vectors, so it follows that X → AX sends Y into Wk−1. Similarly, A sends AX ∈ Wk−1 to
A2X ∈ Wk−1, and more generally we have that AjX ∈ Wk−j. Since W n is the whole vector space,
it follows that for every X the vector AnX lies in W0 = {0}. Finally, since a matrix B is zero if for
all column vectors Y (with the right number of rows!) we have BY = 0, it follows that An = 0.

5.B.X2. It is helpful to write out the conditions for a matrix to be unitriangular; namely P is
(upper) unitriangular if pi,j = 0 for i > j and pi,i = 1 for all i.

Suppose now that A and B are unitriangular, and let C = AB. Consider an entry ci,j where
i > j and expand it as usual:

ci,j =
∑

k

ai,kbk,j

Since B is triangular, it follows that all terms bk,jwith k > j are zero. For the remaining terms, we
have k ≤ j < i and therefore ai,k = 0 in these cases too. Therefore each of the monomials in the
formula for ci,j has a factor equal to zero, and therefore the sum, which is ci,j , must also be zero.
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Now consider ci,i. The preceding discussion shows that the summands for which k > i are all
zero and that the same is true for all summands such that k < i. The only remaining case is when
k = i. In this case ai,k = 1 = bk,i, so the net contribution of this term to the summand is 1. Since
all other terms in the summation are zero, it follows that ci,i = 1 for all i.

Generalization. For more general (upper) triangular matrices, the preceding considerations
show that ci,j = 0 if i > j and ci,i = ai,ibi,i.

5.C.X1. The preceding generalization shows that the diagonal entries of the power matrix Ak

are the krmth powers of the diagonal entries for A. Also, direct calculation shows that if P and
Q are upper triangular then so is P + Q (the matrices must have the same size) and the diagonal
entries are the sums of the diagonal entries for P and Q. Combine these to obtain the assertion
about the diagonal entries of the matrix p(A).

5.C.X2. We shall use the hint. Let vj be an eigenvector for the eigenvalue aj,j ; recall that the
distinct eigenvalues of A are the diagonal entries aj,j .

Since multiplication of polynomials is commutative, we can write p(t) as a product qj(t) · (t−
aj,j), where qj is a product of all the linear factors except t − aj,j . It then follows that

p(A)vj = qj(A) (A − aj,j)vj = qj(A)0 = 0 .

Since j was arbitrary, it follows that p(A)x = 0 for all x in a basis for the space of column vectors
and therefore p(A) is the zero matrix.

Here is an example to illustrate the strength of the conclusion in the preceding exercise. If A

is any matrix of the form










1 a2 a3 a4 a5

0 2 b3 b4 b5

0 0 3 c4 c5

0 0 0 4 d5

0 0 0 0 5











and p(t) = (t − 1)(t − 2)(t − 3)(t − 4)(t − 5), then we automatically know that p(A) = 0 no matter
what coefficients lie above the main diagonal.

2


