Solutions for Additional Exercises in exercises5.pdf

5.A.X1. We shall use the 2×2 determinant test for eigenvalues and then find the eigenvectors.

For the first matrix, the polynomial $\operatorname{det} A-t I$ is $5-6 t+t^{2}=(t-1)(t-5)$, so the eigenvalues are 1 and 5 . To compute the eigenvectors, we must find the null spaces of the following matrices:

$$
A-I=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) \quad, \quad A-5 I=\left(\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right)
$$

In the first case the null space is spanned by the column vector corresponding to $(1,-1)$, while in the second the null space is spanned by the column vector corresponding to $(1,1) . ■$

For the second matrix, the polynomial is $\operatorname{det} A-t I=5-6 t+t^{2}=(t-1)(t-5)$, so the eigenvalues are again 1 and 5 . To compute the eigenvectors, we must find the null spaces of the following matrices:

$$
A-I=\left(\begin{array}{cc}
-1 & -5 \\
1 & 5
\end{array}\right) \quad, \quad A-5 I=\left(\begin{array}{cc}
-5 & -5 \\
1 & 1
\end{array}\right)
$$

In the first case the null space is spanned by the column vector corresponding to $(5,-1)$, while in the second the null space is spanned by the column vector corresponding to $(1,-1)$. .

For the third matrix, the polynomial is $\operatorname{det} A-t I=18-9 t+t^{2}=(t-3)(t-6)$, so the eigenvalues are 3 and 6 . To compute the eigenvectors, we must find the null spaces of the following matrices:

$$
A-3=\left(\begin{array}{cc}
5 & 5 \\
-2 & 2
\end{array}\right) \quad, \quad A-6 I=\left(\begin{array}{cc}
2 & 5 \\
-2 & -5
\end{array}\right)
$$

In the first case the null space is spanned by the column vector corresponding to $(1,-1)$, while in the second the null space is spanned by the column vector corresponding to $(5,-2)$. .
5.A.X2. The polynomial whose roots are eigenvalues is $1-2 \cos \theta+t^{2}$. By the Quadratic Formula, this polynomial has no real roots if and only if $\cos ^{2} \theta-1<0$, or equivalently $\cos \theta \neq \pm 1$. The latter is true precisely when θ is not an integral multiple of $\pi . \square$
5.B.X1. Follow the hint, letting W_{k} be the subspace spanned by the first $k \geq 0$ unit vectors; by convention $W_{0}=\{0\}$. Then the linear transformation $X \rightarrow A X$ sends the $k^{r m t h}$ unit vector into W_{k-1} by our assumptions. Now if $Y \in W_{k}$, then Y is a linear combination of the first k unit vectors, so it follows that $X \rightarrow A X$ sends Y into W_{k-1}. Similarly, A sends $A X \in W_{k-1}$ to $A^{2} X \in W_{k-1}$, and more generally we have that $A^{j} X \in W_{k-j}$. Since W^{n} is the whole vector space, it follows that for every X the vector $A^{n} X$ lies in $W_{0}=\{0\}$. Finally, since a matrix B is zero if for all column vectors Y (with the right number of rows!) we have $B Y=0$, it follows that $A^{n}=0 . ■$
5.B.X2. It is helpful to write out the conditions for a matrix to be unitriangular; namely P is (upper) unitriangular if $p_{i, j}=0$ for $i>j$ and $p_{i, i}=1$ for all i.

Suppose now that A and B are unitriangular, and let $C=A B$. Consider an entry $c_{i, j}$ where $i>j$ and expand it as usual:

$$
c_{i, j}=\sum_{k} a_{i, k} b_{k, j}
$$

Since B is triangular, it follows that all terms $b_{k, j}$ with $k>j$ are zero. For the remaining terms, we have $k \leq j<i$ and therefore $a_{i, k}=0$ in these cases too. Therefore each of the monomials in the formula for $c_{i, j}$ has a factor equal to zero, and therefore the sum, which is $c_{i, j}$, must also be zero.

Now consider $c_{i, i}$. The preceding discussion shows that the summands for which $k>i$ are all zero and that the same is true for all summands such that $k<i$. The only remaining case is when $k=i$. In this case $a_{i, k}=1=b_{k, i}$, so the net contribution of this term to the summand is 1 . Since all other terms in the summation are zero, it follows that $c_{i, i}=1$ for all i.

Generalization. For more general (upper) triangular matrices, the preceding considerations show that $c_{i, j}=0$ if $i>j$ and $c_{i, i}=a_{i, i} b_{i, i}$..
5.C.X1. The preceding generalization shows that the diagonal entries of the power matrix A^{k} are the $k^{r m t h}$ powers of the diagonal entries for A. Also, direct calculation shows that if P and Q are upper triangular then so is $P+Q$ (the matrices must have the same size) and the diagonal entries are the sums of the diagonal entries for P and Q. Combine these to obtain the assertion about the diagonal entries of the matrix $p(A)$.
5.C.X2. We shall use the hint. Let v_{j} be an eigenvector for the eigenvalue $a_{j, j}$; recall that the distinct eigenvalues of A are the diagonal entries $a_{j, j}$.

Since multiplication of polynomials is commutative, we can write $p(t)$ as a product $q_{j}(t) \cdot(t-$ $a_{j, j}$), where q_{j} is a product of all the linear factors except $t-a_{j, j}$. It then follows that

$$
p(A) v_{j}=q_{j}(A)\left(A-a_{j, j}\right) v_{j}=q_{j}(A) 0=0 .
$$

Since j was arbitrary, it follows that $p(A) x=0$ for all x in a basis for the space of column vectors and therefore $p(A)$ is the zero matrix.-

Here is an example to illustrate the strength of the conclusion in the preceding exercise. If A is any matrix of the form

$$
\left(\begin{array}{ccccc}
1 & a_{2} & a_{3} & a_{4} & a_{5} \\
0 & 2 & b_{3} & b_{4} & b_{5} \\
0 & 0 & 3 & c_{4} & c_{5} \\
0 & 0 & 0 & 4 & d_{5} \\
0 & 0 & 0 & 0 & 5
\end{array}\right)
$$

and $p(t)=(t-1)(t-2)(t-3)(t-4)(t-5)$, then we automatically know that $p(A)=0$ no matter what coefficients lie above the main diagonal.

