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1. Follow the hint and compute ST . Since S is a polynomial in T we have ST = TS.

We are given that p(t) =
∑

aktk be a polynomial of least degree m such that p(T ) = 0, so
that am 6= 0, and assume that the constant term a0 is also nonzero. If S =

∑m

1
a−1

0
akT k−1, then

ST =
m∑

1

a−1

0
akT k = a−1

0
(p(T ) − a0I) = −I

and hence if S1 = −S then S1T = I. Now S1 is a polynomial in T , and therefore we also have
TS1 = S1T ; hence TS1 = I and consequently S1, which is a polynomial in T , is equal to T−1.

2. The most transparent way to work this problem is to use determinants, which are introduced
in Section 10B, so this problem can be skipped until we reach that point in the course. The solution
given below will use determinants, including the generalization of Exercise 3 in exercisesTenA.pdf

which is mentioned in the latter.

Suppose first that the eigenvalues are distinct; let λ1, · · · , λn be the eigenvalues, and let
v1, · · · , vn be eigenvectors associated to these eigenvalues. If w =

∑
vj , we claim that the vectors

T kw, where 0 ≤ w ≤ n − 1, form a basis for V .

The first step is to form an n×n matrix A such that the jth column of A gives the corrdinates of
the vectors T j−1w with respect to the basis of eigenvalues v1, · · · , vn. By our assumptions ai,1 = 1

for all i because w =
∑

vi. Likewise, we have T jw =
∑j

λi
vi, and this means that ai,j = λi

j−1.
Therefore A is the transpose of the n× n Vandermonde matrix mentioned in the citation from the
first paragraph of this solution.

The cited reference for the general Vandermonde matrix shows that the determinants of A and
its transpose are given by ∏

i<j

(λj − λi)

so if the eigenvalues are distinct this determinant is nonzero. This means that A is an invertible
matrix and hence the vectors T kw, where 0 ≤ w ≤ n − 1, form a basis for V .

Conversely, suppose there is a basis of eigenvectors but the eigenvalues are not distinct. One
more v1, · · · , vn be a basis of eigenvectors, and let λ1, · · · , λn be eigenvalues associated to these
eigenvectors. We might as well number everything so that λ1 = · · · = λk for some k > 1 since the
eigenvalues are not distinct.

Set V1 equal to the span of v1, · · · , vk where k is given as in the preceding sentence, and
define a linear transformation P : V → V1 sending vj to itself if j ≤ k and to 0 otherwise. By
construction P is onto.

Suppose that there is some vector x ∈ V such that the vectors T kx span V , where 0 ≤ k ≤ m

for some m. Then the vectors PT kx also span V1, and hence there is some y ∈ V1 such that the
vectors T ky span V1. But if w ∈ V1 then T kw = λk

1w, and hence for each nonzero w ∈ V1 the
vectors T kw span a 1-dimensional subspace. By assumption dimV1 ≥ 2, so we have a contradiction.
The source of this contradiction is our assumption that for some x ∈ V the vectors T kx span V ,
so this is impossible and there is no vector x ∈ V such that the vectors T kx span V .
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3. Once again follow the hint. If e1 is the first standard unit vector, then the vectors P j
e1

(where 0 ≤ j ≤ 2) form a basis because Pe1 = e2 and P 2
e1 = Pe2 = e3. But we also have

P 3
e1 = P 2

e2 = Pe3 = − ae1 − be2 − ce3 =

−aIe1 − bPe1 − cP 2
e1

which implies that (aI+bP +cP 2+P 3)e1 = 0 and hence e1 lies in the kernel of (aI+bP +cP 2+P 3).
This implies similar conclusions for e2 and e3, for if j = 2 or 3 then

(aI + bP + cP 2 + P 3)ej = (aI + bP + cP 2 + P 3)P j
e1 =

P j(aI + bP + cP 2 + P 3)e1 = P j0 = 0

so that aI + bP + cP 2 + P 3 takes every vector in a basis to zero and hence must be the zero linear
transformation.
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