Invertibility criterion for triangular matrices

Recall that a square matrix $A=\left(a_{i, j}\right)$ is upper triangular if all entries below the main diagonal are zero; in terms of equations, this means $a_{i, j}=0$ if $i>j$. The goal is to prove the following assertion:

THEOREM. Let $A=\left(a_{i, j}\right)$ be a square upper triangular matrix. Then A is invertible if and only if $a_{j, j} \neq 0$ for all j (in other words, all diagonal elements are nonzero).

We shall prove that if all diagonal elements are nonzero, then A is invertible, and conversely if some diagonal element is zero then A is not invertible.
Proof. Let n be the number of rows and columns in A, and let α_{j} denote the $j^{\text {th }}$ column of A. Also, let \mathbf{e}_{j} denote the $j^{\text {th }}$ column unit vector with 1 in position j and zeros elsewhere.

Suppose first that all diagonal entries are nonzero. We shall prove by induction that \mathbf{e}_{j} is a linear combination of $\alpha_{1}, \cdots, \alpha_{j}$. If we then take $j=n$, then it will follow that $\alpha_{1}, \cdots, \alpha_{n}$ span the space of $n \times 1$ column vectors and hence form a basis. Since a square matrix is invertible if and only if its columns form a basis, it follows that A will be invertible.

If $j=1$ then the inductive assertion is trivially true because $\alpha_{1}=a_{1,1} \mathbf{e}_{1}$ and hence $\mathbf{e}_{1}=$ $a_{1,1}^{-1} \alpha_{1}$. - Suppose now that the assertion is known for $k \leq j-1$, where $j-1 \geq 1$. By construction we have $\alpha_{j}=a_{j, j} \mathbf{e}_{j}+\beta$ where β is a linear combination of $\mathbf{e}_{1}, \cdots, \mathbf{e}_{j-1}$. Then we have

$$
\mathbf{e}=a_{j, j}^{-1} \alpha_{j}-\beta
$$

and by the defining formula and inductive hypothesis we know that β is a linear combination of $\alpha_{1}, \cdots, \alpha_{j-1}$. This establishes the inductive hypothesis for $j \leq k$ where $k \leq n$, and as noted above it implies that A is invertible

Conversely, suppose that some diagonal entry is zero. Specifically, choose k to be the first integer such that $a_{k, k}=0$. Then by the reasoning of the first part we know that the unit vectors $\mathbf{e}_{1}, \cdots, \mathbf{e}_{k-1}$ are linear combinations of the vectors $\alpha_{1}, \cdots, \alpha_{k-1}$. Since α_{k} is a linear combination of $\mathbf{e}_{1}, \cdots, \mathbf{e}_{k-1}$ by the condition $a_{k, k}=0$, it follows that α_{k} is also a linear combination of $\alpha_{1}, \cdots, \alpha_{k-1}$ if $k-1 \geq 1$; assume this temporarily - we shall need to dispose of the case $k=1$ after we are finished with the case $k>1$. Therefore the columns of A are linearly dependent and hence do not form a basis for the space of column matrices.

All that remains is to consider the case $k=1$. However, in this case $\alpha_{k}=0$, and since a set of vectors is linearly dependent if it contains the zero vector, in this case we also see that the columns of A are linearly dependent and hence do not form a basis for the space of column matrices.

COROLLARY. If A is a square upper triangular matrix, then the eigenvalues of A are the triangular matrices.

Proof. We know that c is an eigenvalue of A if and only if $A-c I$ is not invertible, and since A is upper triangular this holds if and only if some diagonal entry of $A-c I$ is zero; note that the latter matrix is also upper triangular. Since the condition on diagonal entries for $A-c I$ is $a_{j, j}-c=0$ for some j, it follows immediately that c is an eigenvalue if and only if $a_{j, j}=c$ for some j.

