Solutions for quiz01w21.pdf

We are given a 3×3 matrix

$$
P=\left(\begin{array}{ccc}
-1 & A & B \\
0 & C & D \\
0 & 0 & -2
\end{array}\right)
$$

where A, B, C, D are single digit nonnegative integers. This matrix has three distinct eigenvalues $-2,-1$ and $C \geq 0$, and we are supposed to compute eigenvectors for each eigenvalue. This means we need to compute the solution spaces for the following systems of homogeneous linear equations:

$$
(P+I) X=0, \quad(P-C I) X=0, \quad(P+2 I) X=0
$$

The three square matrices in this display are given explicitly as follows:

$$
\begin{gathered}
P+I=\left(\begin{array}{ccc}
0 & A & B \\
0 & C+1 & D \\
0 & 0 & -1
\end{array}\right), \quad P-C I=\left(\begin{array}{ccc}
-(C+1) & A & B \\
0 & 0 & D \\
0 & 0 & -(C+2)
\end{array}\right), \\
P+2 I=\left(\begin{array}{ccc}
1 & A & B \\
0 & (C+2) & D \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

The resulting system for the eigenvalue -1 is $-z=0,(C+1) y+D z=0$ and $A y+B z=0$. The solutions to this system are given by $y=z=0$ and x arbitrary. This means that the solution space for the system in this case is generated by $x=1$ and $y=z=0$.
The resulting system for the eigenvalue C is $(C+2) z=D z=0$ and $A y-(C+2) x+B z=0$. In this case the solutions are all scalar multiples of the triple $z=0, y=(C+2)$ and $x=A$.
Finally, the resulting system for the eigenvalue -2 is $(C+2) y+D z=0$ and $x+A y+B z=0$. The solutions for the first equation are all scalar multiples of the triple $z=C+2, y=-D$ and x arbitrary. Therefore the simultaneous solutions for both equations re all scalar multiples of the triple $z=C+2, y=-D$ and $x=A D-B(C+2)$..

Note. Since $C \geq 0$ it follows that both $C+1$ and $C+2$ are positive and hence nonzero.

