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Mathematics 132, Winter 2021, Examination 2

Answer Key
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1. [25 points] (a) Let A be a real symmetic n× n matrix with real entries that is
positive definite. Prove that there is a minimum value c∗ > 0 such that A− c∗I is NOT
positive definite. [Hint: Look first at the case where A is diagonal. Why does this shed
light on the general case?]

(b) Find c∗ when A is the following matrix:(
8 3
3 5

)

SOLUTION

(a) A positive definite real symmetric n × n matrix has an orthonormal basis of
eigenvectors (it is symmetric), and these eigenvalues are all positive if and only if A is
positive definite. Therefore, if λ− is the least (positive) eigenvalue for such a matrix, then
A − cI is positive definite if c < λ− and not positive definite if c ≥ λ−. This means that
there is a minimum value c∗, and it is λ−.

(b) The eigenvalues of this matrix are the roots of the characteristic polynomial det(A−
tI, and for our example this polynomial is t2 − 13t+ 31 = 0. The roots of the latter are

13±
√

169− 124 = 45

2

and hence λ− = c∗is the smaller of these numbers; namely, 1
2 (13− 3

√
5).

2



2. [25 points] Suppose that A is a 3×3 orthogonal matrix, and consider the normal
form as described in week06/orthog-nform.pdf. Show that this matrix must have a 2×2
block summand if A2 6= I. (There is also a converse: If A2 = I then the normal form is a
block sum of 1× 1 matrices.)

SOLUTION

We shall prove the contrapositive: If the normal form for A is block sum of 1 × 1
matrices, then A2 = I.

To see this, let A be a matrix satisfying the block sum condition, and let the nor-
mal form be the diagonal orthogonal matrix D such that P ∗ AP = D, where P is some
orthogonal matrix. Since the diagonal entries of a diagonal orthogonal matrix are ± 1 (or-
thogonality means that vector lengths are preserved), it follows that D2 = I. Furthermore,
if we left multiply D by P and right multiply it by P ∗, we see that A = PDP ∗ and hence

A2 = (PDP ∗)2 = PDP ∗PDP ∗ = PDIDP ∗

where the final equality holds because P∗ = P−1. But now we have

PDIDP ∗ = PD2P ∗ = PIP ∗ = PIP ∗ = I

and hence A2 = I, which is what we wanted to prove.
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3. [25 points] Let λ 6= 0 be a scalar, and let N be the matrix
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


so that λI + N is an elementary Jordan matrix. Show that (λI + N)3 is not in Jordan
form, and show that its Jordan form is λ3I +N . [Hint: What is (λI +N)3 − (λ3I)?]

SOLUTION

The first step is to compute (λI + N)3. Since λI and N commute, we can do this
using the Binomial Theorem:

(λI +N)3 = λ3I + 3λ2N + 3λN2 + N3 =
λ3 3λ2 3λ 1
0 λ3 3λ2 3λ
0 0 λ3 3λ2

0 0 0 λ3


This matrix is not in Jordan form because its (1, 4) entry is nonzero and if C is a matrix
in Jordan form we have ci,j = 0 if j 6= i, i + 1 (and some entries in these positions could
also be zero).

We know that the Jordan form of (λI+N)3 has the form λ3I+P where P is a strictly
upper triangular matrix which is similar to Q = (λI + N)3 − (λ3I). The final assertion
about the Jordan form of (λI+N)3 is equivalent to the condition Q3 6= 0 (for all the other
possible Jordan forms P we have P 3 = 0), and this condition will hold if we can verify
that Q3ej 6= 0 for some j ∈ {1, 2, 3, 4}. We can compute these explicitly, and here is what
we obtain if j = 4:

Q2e4 = Q
(
3λ2e3 + 3λe2 + e1

)
=

9λ4e2 + 18λ3e1

Q3e4 = Q
(
9λ4e2 + 18λ3e1

)
=

Q
(
9λ4e2

)
= 27λ6e1

The right hand side of the last equation iz zero if and only if λ = 0, and since λ 6= 0
we have Q3 6= 0, and we have already noted that the latter implies the Jordan form of
(λI +N)3 is given by λ3I +N .
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4. [25 points] (a) Find the eigenvalues for the following real symmetric matrix: 1 1 1
1 2 2
1 2 4


(b) For each rational eigenvalue α, find a basis for the space of associated eigenvectors.

SOLUTION

(a) The characteristic polynomial χA(t) of this matrix is equal to∣∣∣∣∣∣
1− t 1 1

1 2− t 2
1 2 4− t

∣∣∣∣∣∣ = 2 − 8t + 7t2 − t3 .

(b) We need to find the rational roots of the polynomial that we have computed.
By Gauss’s theorem, we know that every rational root is an integer which evenly divides
the constant term, which is 2. Therefore the only possibilities are ± 1 and ± 2. Direct
substitution shows that χA(1) = 0, χA(−1) = 18, χA(2) = 6 and χA(−2) = 54. Therefore
1 is the only rational root and hence the only rational eigenvalue of A. — In fact, the
characteristic polynomial factors as (1 − t)(2 − 6t + t2) and one can use the Quadratic
Formula to show that the quadratic factor has no rational roots and the remaining roots
are 3 ±

√
7, both of which are positive (none of this is needed to solve the problem,

however).

To find a basis for the associated eigenspace, we need to find the null space of

A − I =

 0 1 1
1 1 2
1 2 3

 , which is row − equivlent to

 1 0 1
0 1 1
0 0 0

 .

The single vector  1
1
−1


spans this null space and hence spans the eigenspace for the eigenvalue 1.
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5. [25 points] Find the determinant of the matrix displayed below. You may use
any valid method to carry out the computation(s).

1 1 1 1
2 3 3 4
2 2 3 4
3 3 3 4



SOLUTION

The most efficient way of computing the determinant is by performing row operations
on the given matrix to obtain an upper triangular matrix, keeping track of the effects of
the operations on the determinants. A first step is to subtract multiples of the first row
from the other rows. These operations yield the following matrix:

1 1 1 1
0 1 1 2
0 0 1 2
0 0 0 1


Subtracting a multiple of one row from another leaves the determinant unchanged, so
the determinant of the new matrix equals the determinant of the original one. Since the
determinant of an upper triangular matrix is the product of the diagonal entries, we know
that the determinants of both matrices are equal to 1.
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6. [25 points] Let V be an n-dimensional inner product space over the complex
numbers, suppose that T : V → V is a normal operator, and let n ≥ 2 be an integer. Prove
that Tn is also normal.

SOLUTION

One quick way of showing this is to note that T has an orthonormal basis of eigen-
vectors because it is normal, and the same (othonormal) basis is a set of eigenvectors for
every power Tn.

This can also be shown without an appeal to the Spectral Theorem on diagonalizing
normal operators. The definition of a normal operator implies that T and T ∗ commute,
and therefore any monomial which has p factors of T and q factors of T ∗ is equal to
T p(T ∗)q. We also know that (Tn)∗ = (T ∗)n, and if we combine these we see that

(Tn)∗Tn = (T ∗)nTn = Tn(T ∗)n = Tn(Tn)∗

and therefore Tn is normal.
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