Solutions to Quiz 2

1. Suppose that two $n \times n$ matrices A and B are similar. Prove that their adjoints A^{*} and B^{*} are also similar when the scalars are either real or complex numbers (i.e., the result is true in both cases).

SOLUTION

We are given that $B=P^{-1} A P$, and if we take adjoints of this equation we see that $B^{*}=$ $P^{*} A^{*}\left(P^{-1}\right)^{*}$. If $Q=\left(P^{-1}\right)^{*}$ then $Q^{-1}=P^{*}$ and therefore $B^{*}=Q^{-1} A^{*} Q$, ,
2. Give examples of matrices A and B of the same size such that $\exp (A+B) \neq \exp (A) \exp (B)$. In fact, there are examples in the 2×2 case where the entries are not at all complicated.

SOLUTION

Let $E_{i i}$ denote the matrix whose (i, j) entry is 1 and all other entries are 0 . Then $E_{i j} E_{j k}=E_{i k}$ and $E_{j k} E_{i j}=0$ if $i \neq k$, so these sorts of matrices are candidates for examples. One can check these identities directly in the 2×2 cases where (i, j) is either $(1,2)$ or $(2,1)$.

If H is the 2×2 matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

then $H^{2}=I, H=E_{12}+E_{21}$, and $\exp H=(\cosh 1) I+(\sinh 1) H$. On the other hand, we know that $E_{12}^{2}=0=E_{21}^{2}$, which means that $\exp E_{12}=I+E_{12}$ and $\exp E_{21}=I+E_{21}$. We then have

$$
\begin{gathered}
\left(\exp E_{12}\right)\left(\exp E_{21}\right)=\left(I+E_{12}\right)\left(I+E_{21}\right)=I+H+E_{11}= \\
\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

and this is clearly not equal to $\exp H$. More precisely, the diagonal entries of this matrix are unequal but the diagonal entries of $\exp H$ are equal.■
3. Suppose that the nilpotent 5×5 matrix N is also an elementary Jordan matrix. Show that N is similar to its adjoint N^{*}.

SOLUTION

The conditions in the problem mean that left multiplication by N has the following effect on the standard unit vectors:

$$
N \mathbf{e}_{1}=\mathbf{0}, \quad N \mathbf{e}_{k}=\mathbf{e}_{k-1} \quad \text { for } \quad k>1
$$

If we define a new ordered basis by $\mathbf{v}_{k}=\mathbf{e}_{6-k}$ for $k=1,2,3,4,5$ then the matrix of left multiplication by N with respect to the new ordered basis is equal to N^{*}. Therefore N and N^{*} are similar matrices.■

