Solutions to problems from Axler, Section 10A

Chapter 10

Trace and Determinant

1. Suppose that $T \in \mathcal{L}(V)$ and $\left(v_{1}, \ldots, v_{n}\right)$ is a basis of V. Prove that $\mathcal{M}\left(T,\left(v_{1}, \ldots, v_{n}\right)\right)$ is invertible if and only if T is invertible.

Solution: First suppose that $\mathcal{M}(T)$ is an invertible matrix (because the only basis is sight is (v_{1}, \ldots, v_{n}), we can leave the basis out of the notation). Thus there exists an n-by- n matrix B such that

$$
\mathcal{M}(T) B=B \mathcal{M}(T)=I .
$$

There exists an operator $S \in \mathcal{L}(V)$ such that $\mathcal{M}(S)=B$ (sec 3.19). Thus the equation above becomes

$$
\mathcal{M}(T) \mathcal{M}(S)=\mathcal{M}(S) \mathcal{M}(T)=I
$$

which we can rewrite as

$$
\mathcal{M}(T S)=\mathcal{M}(S T)=\mathcal{M}(I)
$$

which implies that

$$
T S=S T=I .
$$

Thus T is invertible, as desired, with inverse S.
To prove the implication in the other direction, suppose now that T is invertible. Thus there exists $S \in \mathcal{L}(V)$ such that

$$
T S=S T=I .
$$

This implies that

$$
\mathcal{M}(T S)=\mathcal{M}(S T)=\mathcal{M}(I)
$$

which implies that

$$
\mathcal{M}(T) \mathcal{M}(S)=\mathcal{M}(S) \mathcal{M}(T)=I
$$

Thus $\mathcal{M}(T)$ is invertible, as desired, with inverse $\mathcal{M}(S)$.
2. Prove that if A and B are square matrices of the same size and $A B=I$, then $B A=I$.

Solution: Suppose that A and B are n-by- n matrices and $A B=I$. There exist $S, T \in \mathcal{L}\left(\mathrm{~F}^{n}\right)$ such that

$$
\mathcal{M}(S)=A \quad \text { and } \quad \mathcal{M}(T)=B
$$

here we are using the standard basis of \mathbf{F}^{n} (the existence of $S, T \in \mathcal{L}\left(\mathbf{F}^{n}\right)$ satisfying the equations above follows from 3.19). Because $A B=I$, we have $\mathcal{M}(S) \mathcal{M}(T)=I$, which implies that $\mathcal{M}(S T)=\mathcal{M}(I)$, which implies that $S T=I$, which implics that $T S=I$ (by Exercise 23 in Chapter 3). Thus

$$
\begin{aligned}
B A & =\mathcal{M}(T) \mathcal{M}(S) \\
& =\mathcal{M}(T S) \\
& =\mathcal{M}(I) \\
& =I .
\end{aligned}
$$

3. Suppose $T \in \mathcal{L}(V)$ has the same matrix with respect to every basis of V. Prove that T is a scalar multiple of the identity operator.

Solution: We begin by proving that ($v, T v$) is linearly dependent for every $v \in V$. To do this, fix $v \in V$, and suppose that ($v, T v$) is linearly independent. Then ($v, T v$) can be extended to a basis ($v, T v, u_{1}, \ldots, u_{n}$) of V. The first column of the matrix of T with respect to this basis is

$$
\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

Clearly ($2 v, T v, u_{1}, \ldots, u_{n}$) is also a basis of V. The first column of the matrix of T with respect to this basis is

$$
\left[\begin{array}{c}
0 \\
2 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Thus T has different matrices with respect to the two bases we have considered. This contradiction shows that $(v, T v)$ is linearly dependent for every $v \in V$. This implies that for every vector in V is an eigenvector of T. This implies that T is a scalar multiple of the identity operator (by Exercise 12 in Chapter 5).
4. Suppose that $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$ are bases of V. Let $T \in \mathcal{L}(V)$ be the operator such that $T v_{k}=u_{k}$ for $k=1, \ldots, n$. Prove that

$$
\mathcal{M}\left(T,\left(v_{1}, \ldots, v_{n}\right)\right)=\mathcal{M}\left(I,\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{n}\right)\right)
$$

Solution: Fix k. Write

$$
u_{k}=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

where $a_{1}, \ldots, a_{n} \in \mathbf{F}$. Because $T v_{k}=u_{k}$, the $k^{\text {th }}$ column of the matrix $\mathcal{M}\left(T,\left(v_{1}, \ldots, v_{n}\right)\right)$ consists of the numbers a_{1}, \ldots, a_{n}. Because $I u_{k}=u_{k}$, the $k^{\text {th }}$ column of $\mathcal{M}\left(I,\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{n}\right)\right)$ also consists of the numbers a_{1}, \ldots, a_{n}.

Because $\mathcal{M}\left(T,\left(v_{1}, \ldots, v_{n}\right)\right)$ and $\mathcal{M}\left(I,\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, \ldots, v_{n}\right)\right)$ have the same columns, these two matrices must be equal.
5. Prove that if B is a square matrix with complex entries, then there exists an invertible square matrix A with complex entries such that $A^{-1} B A$ is an upper-triangular matrix.

Solution: Suppose B is an n-by- n matrix with complex entries. Let $\left(e_{1}, \ldots, e_{n}\right)$ denote the standard basis of \mathbf{C}^{n}. There exists $T \in \mathcal{L}\left(\mathbf{C}^{n}\right)$ such that $\mathcal{M}\left(T,\left(e_{1}, \ldots, e_{n}\right)\right)=B$ (see 3.19).

There is a basis $\left(v_{1}, \ldots, v_{n}\right)$ of V such that $\mathcal{M}\left(T,\left(v_{1}, \ldots, v_{n}\right)\right)$ is an uppertriangular matrix (see 5.13). Let $A=\mathcal{M}\left(\left(v_{1}, \ldots, v_{n}\right),\left(e_{1}, \ldots, e_{n}\right)\right)$. Then A is invertible (by 10.2) and

$$
\begin{aligned}
A^{-1} B A & =A^{-1} \mathcal{M}\left(T,\left(e_{1}, \ldots, e_{n}\right)\right) A \\
& =\mathcal{M}\left(T,\left(v_{1}, \ldots, v_{n}\right)\right)
\end{aligned}
$$

where the second equality comes from 10.3 . Thus $A^{-1} B A$ is an uppertriangular matrix.
6. Give an example of a real vector space V and $T \in \mathcal{L}(V)$ such that

$$
\operatorname{trace}\left(T^{2}\right)<0
$$

Solution: Define $T \in \mathcal{L}\left(\mathbf{R}^{2}\right)$ by

$$
T(x, y)=(-y, x)
$$

Then $T^{2}=-I$, so $\operatorname{trace}\left(T^{2}\right)=-2$.
7. Suppose V is a real vector space, $T \in \mathcal{L}(V)$, and V has a basis consisting of eigenvectors of T. Prove that $\operatorname{trace}\left(T^{2}\right) \geq 0$.

SOLUTION: Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V consisting of eigenvectors of T. Thus there exist $\lambda_{1}, \ldots, \lambda_{n} \in \mathbf{R}$ such that $T v_{j}=\lambda_{j} v_{j}$ for each j. Clearly the matrix of T^{2} with respect to the basis $\left(v_{1}, \ldots, v_{n}\right)$ is the diagonal matrix

$$
\left[\begin{array}{ccc}
\lambda_{1}^{2} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}^{2}
\end{array}\right]
$$

Thus trace $T^{2}=\lambda_{1}{ }^{2}+\cdots+\lambda_{n}{ }^{2} \geq 0$.
8. Suppose V is an inner-product space and $v, w \in \mathcal{L}(V)$. Define $T \in \mathcal{L}(V)$ by $T u=\langle u, v\rangle w$. Find a formula for trace T.

Solution: First suppose that $v \neq 0$. Extend $\left(\frac{v}{\|v\|}\right)$ to an orthonormal basis $\left(\frac{v}{\|v\|}, e_{1}, \ldots, e_{n}\right)$ of V. Note that for each j, we have $T e_{j}=0$ (because $\left\langle e_{j}, v\right\rangle=0$). The trace of T equals the sum of the diagonal entries in the matrix of T with respect to the basis ($\frac{v}{\|\|\|}, e_{1}, \ldots, e_{n}$). Thus

$$
\begin{aligned}
\operatorname{trace} T & =\left\langle T\left(\frac{v}{\|v\|}\right), \frac{v}{\|v\|}\right\rangle+\left\langle T e_{1}, e_{1}\right\rangle+\cdots+\left\langle T e_{n}, e_{n}\right\rangle \\
& =\left\langle\left\langle\frac{v}{\|v\|}, v\right\rangle w, \frac{v}{\|v\|}\right\rangle \\
& =\langle w, v\rangle
\end{aligned}
$$

If $v=0$, then $T=0$ and so $\operatorname{trace} T=0=\langle w, v\rangle$. Thus we have the formula

$$
\operatorname{trace} T=\langle w, v\rangle
$$

regardless of whether or not $v=0$.
9. Prove that if $P \in \mathcal{L}(V)$ satisfies $P^{2}=P$, then trace P is a nonnegative integer.

Solution: Suppose that $T \in \mathcal{L}(V)$ satisfies $P^{2}=P$. Let $\left(u_{1}, \ldots, u_{m}\right)$ be a basis of range P and let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of null P. Then

$$
\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}\right)
$$

is a basis of V (this holds because $V=$ range $T \oplus$ null T; see Exercise 21 in Chapter 5). For each u_{j} we have $P u_{j}=u_{j}$ and for each v_{k} we have $P v_{k}=0$. Thus the matrix of P with respect to the basis above of V is a diagonal matrix whose diagonal contains $m 1$'s followed by $n 0$'s. Thus trace $P=m$, which is a nonnegative integer, as desired. In fact, we have shown that

$$
\text { trace } P=\operatorname{dim} \text { range } P
$$

10. Prove that if V is an inner-product space and $T \in \mathcal{L}(V)$, then

$$
\operatorname{trace} T^{\prime \prime}=\overline{\operatorname{trace} T}
$$

Solution: Suppose that V is an inner-product space and $T \in \mathcal{L}(V)$. Let $\left(e_{1}, \ldots, e_{n}\right)$ be an orthonormal basis of V. The trace of any operator on V equals the sum of the diagonal entries on the matrix of the operator with respect to this basis. Thus

$$
\begin{aligned}
\operatorname{trace} T^{*} & =\left\langle T^{*} e_{1}, e_{1}\right\rangle+\cdots+\left\langle T^{*} e_{n}, e_{n}\right\rangle \\
& =\left\langle e_{1}, T e_{1}\right\rangle+\cdots+\left\langle e_{n}, T e_{n}\right\rangle \\
& =\overline{\left\langle T e_{1}, e_{1}\right\rangle}+\cdots+\overline{\left\langle T e_{n}, e_{n}\right\rangle} \\
& =\overline{\left\langle T e_{1}, e_{1}\right\rangle+\cdots+\left\langle T e_{n}, e_{n}\right\rangle} \\
& =\overline{\operatorname{trace} T} .
\end{aligned}
$$

11. Suppose V is an inner-product space. Prove that if $T \in \mathcal{L}(V)$ is a positive operator and trace $T=0$, then $T=0$.

Solution: Suppose $T \in \mathcal{L}(V)$ is a positive operator and trace $T=0$. There exists an operator $S \in \mathcal{L}(V)$ such that $T=S^{*} S$ (by 7.27). Let $\left(e_{1}, \ldots, e_{n}\right)$ be an orthonormal basis of V. Then

$$
\begin{aligned}
0 & =\operatorname{trace} T \\
& =\left\langle T e_{1}, e_{1}\right\rangle+\cdots+\left\langle T e_{n}, e_{n}\right\rangle \\
& =\left\langle S^{*} S e_{1}, e_{1}\right\rangle+\cdots+\left\langle S^{*} S e_{n}, e_{n}\right\rangle \\
& =\left\|S e_{1}\right\|^{2}+\cdots+\left\|S e_{n}\right\|^{2}
\end{aligned}
$$

The equation above implies that $S e_{j}=0$ for each j. Because S is 0 on a basis of V, we have $S=0$. Because $T=S^{*} S$, this implies that $T=0$.
X2. Suppose $T \in \mathcal{L}\left(\mathbf{C}^{3}\right)$ is the operator whose matrix is
13.

$$
\left[\begin{array}{ccc}
51 & -12 & -21 \\
60 & -40 & -28 \\
57 & -68 & 1
\end{array}\right]
$$

Someone tells you (accurately) that -48 and 24 are eigenvalues of T. Without using a computer or writing anything down, find the third eigenvalue of T.

SOLUTION: The sum of the eigenvalues of T equals the sum of the diagonal terms of the matrix above (both quantities equal trace T). The sum of the diagonal terms of the matrix above equals 12 . The sum of two of the eigenvalues of $T,-48$ and 24 , equals -24 . Because the sum of all three eigenvalues of T must equal 12, the third eigenvalue of T must be 36 .

Prove or give a counterexample: if $T \in \mathcal{L}(V)$ and $c \in \mathbf{F}$, then trace $(c T)=$ ctrace T.

Solution: Suppose $T \in \mathcal{L}(V)$ and $c \in \mathbf{F}$. To prove that $\operatorname{trace}(c T)=$ $\operatorname{ctrace} T$, consider a basis of V. Then trace T equals the sum of the diagonal terms of the matrix of T with respect to this basis. The matrix of $c T$, with respect to the same basis, equals c times the matrix of T. Thus the sum of the diagonal terms of the matrix of $c T$ equals c times the sum of the diagonal terms of the matrix of T. In other words, trace $(c T)=c \operatorname{trace} T$.

Prove or give a counterexample: if $S, T \in \mathcal{L}(V)$, then

$$
\operatorname{trace}(S T)=(\operatorname{trace} S)(\operatorname{trace} T)
$$

Solution: Define $S, T \in \mathcal{L}\left(\mathbf{F}^{2}\right)$ by $S(x, y)=T(x, y)=(-y, x)$. Then with respect to the standard bases the matrix of S (which of course equals the matrix of T) is

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

Thus trace $S=\operatorname{trace} T=0$. However, $S T=-I$, so trace $S T=-2$. Thus for this choice of S and T, we have trace $(S T) \neq(\operatorname{trace} S)(\operatorname{trace} T)$.

Of course there are also many other examples.
25. Suppose $T \in \mathcal{L}(V)$. Prove that if trace $(S T)=0$ for all $S \in \mathcal{L}(V)$, then $T=0$.
17.

SOLUTION: Suppose that trace $(S T)=0$ for all $S \in \mathcal{L}(V)$. Then $\operatorname{trace}(T S)=0$ for all $S \in \mathcal{L}(V)$ (by 10.12). Suppose that there exists $v \in V$ such that $T v \neq 0$. Then ($T v$) can be extended to a basis ($T v, u_{1}, \ldots, u_{n}$) of V. Define $S \in \mathcal{L}(V)$ by

$$
S\left(a T v+b_{1} u_{1}+\cdots+b_{n} u_{n}\right)=a v
$$

Thus $S(T v)=v$ and $S u_{j}=0$ for each j. Hence $(T S)(T v)=T(S(T v))=T v$ and $(T S)\left(u_{j}\right)=0$ for each j. This implies that with respect to the basis ($T v, u_{1}, \ldots, u_{n}$), the matrix of $T S$ consists of all 0 's except for a I in the upper-left corner. Thus trace $(T S)=1$. This contradiction shows that our assumption that $T v \neq 0$ must have been false. Thus $T v=0$ for every $v \in V$, which means that $T=0$.
15. Suppose V is an inner-product space and $T \in \mathcal{L}(V)$. Prove that if $\left(e_{1}, \ldots, e_{n}\right)$
18. is an orthonormal basis of V, then

$$
\operatorname{trace}\left(T^{*} T\right)=\left\|T e_{1}\right\|^{2}+\cdots+\left\|T e_{n}\right\|^{2}
$$

Conclude that the right side of the equation above is independent of which orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ is chosen for V.

Solution: Suppose that $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis of V. Then

$$
\begin{aligned}
\operatorname{trace} T^{*} T & =\left\langle T^{*} T e_{1}, e_{1}\right\rangle+\cdots+\left\langle T^{*} T e_{n}, e_{n}\right\rangle \\
& =\left\langle T e_{1}, T e_{1}\right\rangle+\cdots+\left\langle T e_{n}, T e_{n}\right\rangle \\
& =\left\|T e_{1}\right\|^{2}+\cdots+\left\|T e_{n}\right\|^{2}
\end{aligned}
$$

Because trace $T^{*} T$ does not depend upon the choice of a basis of V, the formula above shows that $\left\|T e_{1}\right\|^{2}+\cdots+\left\|T e_{n}\right\|^{2}$ is independent of the orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$.

