SOLUTIONS TO PROBLEMS IN AXLER, SECTION 10B

The solutions to all problems except number 6 are in http://linearalgebras.com/10b.html. Here is the solution for 6 :

For each matrix A_{k}, we know that A_{k} is similar to an upper triangular matrix C_{k}, where the latter is the matrix of the associated linear transformation " A_{k} " with respect to the ordered basis \mathscr{B}_{k}. If we form an ordered basis \mathfrak{B} from the latter by taking the vectors in \mathscr{B}_{1} first, \mathscr{B}_{2} second, and so on, then the matrix C of the linear transformation " A " with respect to the ordered basis \mathfrak{B} will again be upper triangular, for each basis vector in \mathfrak{B} is sent to a linear combination of itself and the preceding vectors. Furthermore, the resulting diagonal block submatrices C_{k} must also be upper triangular for the same reason.

The determinants of C and A are equal because the matrices A and C are similar because similar matrices have the same determiinants, and likewise for the submatrices $\boldsymbol{A}_{\boldsymbol{k}}$ and $\boldsymbol{C}_{\boldsymbol{k}}$. Now the diagonal entries of \boldsymbol{C} are given by the corresponding diagonal entries for all of the C_{k} 's, and therefore the determinant of C equals the product of the determinants of the submatrices C_{k}. Since C is similar to A and each submatrix C_{k} is similar to the corresponding submatrix A_{k}, the invariance of determinants with respect to similarity implies that the determinants of C and each submatrix C_{k} are equal to the determinants of A and each A_{k} respectively, and hence $\operatorname{det} A=\operatorname{det} C$. Since the latter is the product of all the scalars det C_{k}, it follows that the former is equal to the product of the (corresponding equal) scalars det A_{k}.

