SOLUTIONS TO PROBLEMS IN AXLER, SECTION 10B

The solutions to all problems except number 6 are in <u>http://linearalgebras.com/10b.html</u>. Here is the solution for **6**:

For each matrix A_k , we know that A_k is similar to an upper triangular matrix C_k , where the latter is the matrix of the associated linear transformation " A_k " with respect to the ordered basis \mathcal{B}_k . If we form an ordered basis \mathcal{B} from the latter by taking the vectors in \mathcal{B}_1 first, \mathcal{B}_2 second, and so on, then the matrix C of the linear transformation "A" with respect to the ordered basis \mathcal{B} will again be upper triangular, for each basis vector in \mathcal{B} is sent to a linear combination of itself and the preceding vectors. Furthermore, the resulting diagonal block submatrices C_k must also be upper triangular for the same reason.

The determinants of *C* and *A* are equal because the matrices *A* and *C* are similar because similar matrices have the same determinants, and likewise for the submatrices A_k and C_k . Now the diagonal entries of *C* are given by the corresponding diagonal entries for all of the C_k 's, and therefore the determinant of *C* equals the product of the determinants of the submatrices C_k . Since *C* is similar to *A* and each submatrix C_k is similar to the corresponding submatrix A_k , the invariance of determinants with respect to similarity implies that the determinants of *C* and each submatrix C_k are equal to the determinants of *A* and each A_k respectively, and hence det $A = \det C$. Since the latter is the product of all the scalars det C_k , it follows that the former is equal to the product of the (corresponding equal) scalars det A_k .