Proof of the "Simple recognition priniple"

Here is a proof of the final result stated in firstcourse1.pdf:

THEOREM. Suppose that S is a finite basis for the vector subspace $W \subset V$ (where V is also a vector space) and $y \in V$ is not in W. Then the set $S \cup \{y\}$ is linearly independent.

Proof. Suppose that we have a nontrivial expression

$$\sum_{s \in S} c_s s + dy = 0$$

where not all the coefficients c_s and d are zero. If d = 0 this means that $\sum_s c_s s = 0$ where some $c_s \neq 0$. Since the set S is linearly independent, it follows that each $c_s = 0$, a contradiction. Therefore $d \neq 0$ and hence we have

$$y = \sum_{s} -d^{-1}c_s s$$

which means that $y \in W$. Since the latter is assumed to be false, we have a contradiction. Therefore the set $S \cup \{y\}$ must be linearly independent.