Complex conjugate matrices

Given and $m \times n$ matrix $A=\left(a_{i, j}\right)$ over the complex numbers, its conjugate matrix is given by

$$
\bar{A}=\left(\overline{a_{i, j}}\right)
$$

where \bar{z} is the complex conjugate of z. Since complex conjugation sends sums to sums and products to products, it is a routine exercise to verify the following identities:

$$
\begin{aligned}
\overline{A+B} & =\bar{A}+\bar{B} \\
\overline{c A} & =\bar{c} \cdot \bar{A} \\
\overline{A B} & =\bar{A} \cdot \bar{B}
\end{aligned}
$$

These identities yield the proposition on page 3 of math132notes5B.pdf.

