Triangular matrices

Here are two examples of triangular matrices. The first is upper triangular, and the second is lower triangular.

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & 0 & 3
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 2 & 0 \\
3 & 3 & 3
\end{array}\right)
$$

Two types of triangular matrices have special names. A triangular matrix is strictly triangular if all the diagonal entries are zeros, and it is unitriangular if these entries are all ones. Many writers also use the word unipotent to describe the latter class of matrices.

If a matrix B is upper triangular, then the linear transformation sending a column vector X to $B X$ has the following important property: If E_{j} denotes the unit column vector whose $j^{\text {th }}$ coordinate is 1 and all other coordinates are 0 , then $B E_{j}$ is a linear combination of the first j column vectors. - Conversely, if B has the latter property, then it is upper triangular.

More generally, if $T: V \rightarrow V$ is a linear transformation and \mathcal{B} is an ordered basis $\left\{b_{1}, \cdots, b_{n}\right\}$ for V, we say that T is in upper triangular form with respect to \mathcal{B} if for each j the vector $T b_{j}$ is a linear combination of b_{1}, \cdots, b_{j}.

