Triangular matrices

Here are two examples of triangular matrices. The first is upper triangular, and the second is lower triangular.

(1)	2	3	(1)	0	$0 \rangle$
0	2	3	2	2	0
$\int 0$	0	3/	$\sqrt{3}$	3	3/

Two types of triangular matrices have special names. A triangular matrix is **strictly triangular** if all the diagonal entries are zeros, and it is **unitriangular** if these entries are all ones. Many writers also use the word **unipotent** to describe the latter class of matrices.

If a matrix B is upper triangular, then the linear transformation sending a column vector X to BX has the following important property: If E_j denotes the unit column vector whose j^{th} coordinate is 1 and all other coordinates are 0, then BE_j is a linear combination of the first j column vectors. — Conversely, if B has the latter property, then it is upper triangular.

More generally, if $T: V \to V$ is a linear transformation and \mathcal{B} is an ordered basis $\{b_1, \dots, b_n\}$ for V, we say that T is in upper triangular form with respect to \mathcal{B} if for each j the vector Tb_j is a linear combination of b_1, \dots, b_j .