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Taking the square roots yields the Triangle Inequality for vector lengths.� 
 

The following consequences of the triangle inequalities are often useful; they give lower 
bounds instead of upper bounds: 
 

Proposition 1.  For all vectors  a,  b,  c,  x ,  y  we have the following: 
 

��|| x || � || y ||���    �    || x �  y || 
 

�d(b, c) � d(c, a) �    �     d(a, b)   
 

Proof.   As above, the main point is to verify the first inequality and to derive the second 
from it.  Two applications of the Triangle Inequality for vector lengths show that 
 

|| x ||    ��   || x  �  y ||  �� || y || 
 

|| y ||    �    || x ||  �� || y  �  x ||   �   || x ||  �  || x –  y || 
 

and these may be rewritten as follows: 
 

|| x ||  �  || y ||   �    || x �  y || ,     || y ||  �  || x ||   �    || x �  y || 
 

These are equivalent to the first inequality in the proposition, and the second follows by 

making the substitutions   y  �  c � a  and   x  �  b � c  in the first one.   Of course, by 

the symmetry properties of distance and the expression  ��|| x || � || y ||�  this 

inequality can be rewritten many ways,  including  �d(a, c) �� d(b, c) �   �   d(a, b) .� 

 
Equality in the Triangle Inequalities 

 
 

The preceding material is covered in many linear algebra courses, but we shall now go 
one step beyond such courses.  As already noted, one has an equality 
 

� ���� x,  y ����  �   �   || x ||  · || y || 
 

corresponding to the Cauchy – Schwarz Inequality if and only if the vectors x and y are 
linearly dependent.  For our purposes it will be important to know the analogous 
conditions under which one has the equations 
 

|| x � y ||   �    || x || � || y ||  d(a, b)   �   d(a, c)  �  d(c, b) 
 

associated to the Triangle Inequalities. 
 

Proposition 2.   Two nonzero vectors x and y satisfy || x � y ||   �    || x || � || y || if 
and only if each is a nonnegative multiple of the other. 
 

Proposition 3.   Three vectors  a,  b  and c  satisfy d(a, b)   �   d(a, c)  �  d(c, b)  if 

and only if  c � a    ��  s (b � a),  where  0  �   s   �  1.  
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Proof of Proposition 2.   If one of the vectors is nonzero, then it is clear that equality 
holds and that one of the vectors is a nonnegative multiple of the other, and this is why 

we assume that both x and y are nonzero. 
 

If we look back at the derivation of the Triangle Inequality, we see that the crucial step in 

deriving an inequality comes from applying the Cauchy – Schwarz Inequality to   x   and  

y.  In particular, it follows that   || x � y ||   �   || x || � || y ||  will hold if and only if we 

have   
 

���� x,  y ����    �   || x || || y || 
 

(note that this condition is stronger than equality in the Cauchy – Schwarz Inequality, for 
we the latter involves the absolute value of the inner product and not the inner product 
itself).   It will suffice to show that this stronger equation holds if and only if the nonzero 

vectors   x   and   y  are positive multiples of each other.  If   y   �   t x  where  t  is 

positive, then we have  
 

���� x,  y ����   �   ���� x,  t x ����   �   t || x || 
2   �   || x || || t x ||   �   || x || || y || 

 

which shows the “if” direction.  Conversely, if equality holds then the conclusion of the 

Cauchy – Schwarz Inequality shows that   x  and  y  are nonzero multiples of each other, 

so let   y   �   t x  where  t  is nonzero; we need to show that  t  is positive.  But now we 

have  
 

t || x || 2   �   ���� x,  t x ����   �   ���� x,  y ����   �   || x || || y ||   � 
 

|| x || || t x ||   �   � t � || x || 2 
 

which implies that   t  �  � t �   and hence that  t  is positive.� 
 

Proof of Proposition 3.   Suppose first that  a  �  b.   Then we have   0   �   d(a, b)   �   

d(a, c)  �  d(c, b)  if and only if both summands on the right hand side are equal to zero, 

which is equivalent to   a  �   b   �   c,  so that the conclusion is true for trivial reasons. 
 

Suppose now that  a  and  b  are unequal.  By Proposition  1  and the definition of 

distance, we know that    d(a, b)    ��   d(a, c)   �   d(c, b)  if and only if either (1) one 

of   a  �  c   or   b  �  c   is true, (2) the vectors  c � a  and  b � c  are positive multiples 

of each other.  In the first cases we have (respectively) either  c � a   �   0 · (b � a)   or   

c � a   �� 1 · (b � a),  so the conclusion is true if either of    a  �  c   or   b  �  c    is true.  

Thus we are left with the case where  b � c   �   t (c � a)   for some   t  >  0.  We then 

have   b � a   ��  (c � a)  �� (b � c)   �   (1 � t ) · (c � a),  so that   
 

c � a    �   (1 � t )  

–
 

1
 · (b � a) 

 

for some positive scalar  t .  To conclude the argument, note that the latter is equivalent 

to  c � a   �  s (b � a)  for some scalar  s  satisfying the conditions  0  <  s  <  1.� 
 


