Problems of Lmear
Algebra, 3/e

7.7 GRAM-SCHMIDT ORTHOGONALIZATION PROCESS
Suppose {v;, vy, ..., v,} is a basis of an inner proauct space ¥. One can use this basis to construct an
orthogonal basis {w, w,, ..., w,} of ¥/ as follows. Set
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In other words, for k =2,3, ..., , n, we define
w, = Uk —CpWy — CpoWy — .. — ck,k_lwk_l

where ¢;; = (v, w;)/{w;, w;) is the component of v, along w;. By Theorem 7.8, each w, is orthogonal to
the preceeding w’s. Thus wy, w,, ..., w, form an orthogonal basis for ' as claimed. Normalizing each w,
will then yield an orthonormal basis for V.

The above construction is known as the Gram—Schmidt orthogonalization process. The following
remarks are in order.

Remark 1: Each vector wy, is a linear combination of v, and the preceding w’s. Hence one can easily
show, by induction, that each wy, is a linear combination of v, vy, ..., v,.

Remark 2: Since taking multiples of vectors does not affect orthgonality, it may be simpler in hand
calculations to clear fractions in any new w;, by multiplying w; by an appropriate scalar, before obtaining
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Remark 3: Suppose u;,u,,...,u, are linearly independent, and so they form a basis for
U = span(y;). Applying the Gram—Schmidt orthogonalization process to the u’s yields an orthogonal
basis for U.

The following theorem (proved in Problems 7.26 and 7.27) use the above algorithm and remarks.

Theorem 7.9: Let {v;,v,,...,v,} by any basis of an inner product space V. Then there exists an
orthonormal basis {u;, u,, ..., u,} of V" such that the change-of-basis matrix from {v,} to
{u;} is triangular, that is, for k =1,...,n,

vy =(1,1,1,1), v, =(1,2,4,5), v; =(1,-3,—-4,-2)
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Clear fractions to obtain w; = (=6, —17, —13, 14).
Thus wy, w,, w; form an orthogonal basis for U. Normalize these vectors to obtain an orthonormal basis
{ur, up, us} of U. We have [lwi]|” = 4, lw,||” = 10, [lws]|” = 910, so
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Gram-Schmidt orthogonalization process to {1, £, t
P5(0).
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Multiply by 5 to obtain f; = 5 — 3.
Thus {1, ¢, 3t —1, 5 — 3t} is the required orthogonal basis.
Remark: Normalizing the polynomials in Exampie 7.11 so that p(i) = 1 yieids the polynomiais

TIVE DEFINITE MATRICES

This section discusses two types of matrices that are closely related to real inner product spaces V.
Here vectors in R” will be represented by column vectors. Thus (i, v) = u” v denotes the inner product in
Euclidean space R”.




