Example of the Power Method for finding the maximal eigenvalues and their eigenvectors

The Power Method proceeds as follows: We start with a square matrix $\bf A$ and a nonzero column vector $\bf x$, say the first unit vector, such that the first coordinate of $\bf A \bf x$ is nonzero. Our example is the following positive definite symmetric matrix which we have already studied:

1	1	1
1	2	2
1	2	3

We proceed to consider the sequences of vectors $\{x_n\}$ and $\{y_n\}$ defined by $x_1 = e_1$ and recursively $y_{n+1} = Ax_n$ and $x_{n+1} = d_{n+1}^{-1}y_{n+1}$, where d_{n+1} is the first coordinate of y_{n+1} . If this coordinate is 0 at some point, then the procedure does not work, but it does work most of the time. If we iterate this process enough times we see that eventually the vectors x_n , y_n and the scalar dn seem to approach a limit; in practical terms, the approximations up to N decimal places (where N is arbitrary) eventually reach a stable value. The limit of the values d_n turns out to be the largest eigenvalue of the matrix, and the limits of the vectors x_n and y_n are eigenvectors for this eigenvalue. A proof of these facts is given in a companion document; the table below shows what happens for our example. One can read off the eigenvalue approximations d_n as the entries in the fourth column (= the first column in the middle group).

	X _n			$\mathbf{y}_{n+1} = \mathbf{A}\mathbf{x}_n$			X _{n+1}	
1	0	0	1	1	1	1	1	1
1	1	1	3	5	6	1	1.666667	2
1	1.666667	2	4.666667	8.333333	10.33333	1	1.785714	2.214286
1	1.785714	2.214286	5	9	11.21429	1	1.8	2.242857
1	1.8	2.242857	5.042857	9.085714	11.32857	1	1.8017	2.246459
1	1.8017	2.246459	5.048159	9.096317	11.34278	1	1.801908	2.246914
1	1.801908	2.246914	5.048822	9.097643	11.34456	1	1.801934	2.246971
1	1.801934	2.246971	5.048905	9.09781	11.34478	1	1.801937	2.246979
1	1.801937	2.246979	5.048916	9.097832	11.34481	1	1.801938	2.246979
1	1.801938	2.246979	5.048917	9.097834	11.34481	1	1.801938	2.24698
1	1.801938	2.24698	5.048917	9.097835	11.34481	1	1.801938	2.24698
1	1.801938	2.24698	5.048917	9.097835	11.34481	1	1.801938	2.24698
1	1.801938	2.24698	5.048917	9.097835	11.34481	1	1.801938	2.24698
1	1.801938	2.24698	5.048917	9.097835	11.34481	1	1.801938	2.24698
1	1.801938	2.24698	5.048917	9.097835	11.34481	1	1.801938	2.24698