
A matrix with no real eigenvalues 
 
The standard geometric interpretation of the linear transformation with matrix  
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is that it represents a counterclockwise rotation by 90 degrees about the origin.  From this 
viewpoint it is clear that the matrix has no real eigenvalues or eigenvectors, for it takes a vector 
(x, y)  to its image under this rotation.    The rotated vector is never a scalar multiple of the 
original vector provided the latter is nonzero, and hence there cannot be any real eigenvectors 
or eigenvalues. 
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The Spectral Theorem imples that the matrix has an orthonormal basis of eigenvectors over the complex numbers but has no eigenvectors over the reals.  A similar conclusion holds for all 2x2 rotation matrices except for the angles of 0 and 180 degrees (when A = -I).


