Cayley - Hamilton Theorem for Jordan form matrices

If A is an $n \times n$ matrix, the Cayley - Hamilton Theorem describes an explict polynomial $\chi_{A}(t)$ of degree n (the characteristic polynomial) such that $\chi_{A}(A)=0$. One can define it using determinants, but since Axler does not treat these until the last chapter in the book we have to give an ad hoc description here which is valid if A is in Jordan form. Namely, if A is in Jordan form (hence A is upper triangular), then

$$
\chi_{A}(t)=\prod_{j=1}^{n}\left(t-a_{j, j}\right)
$$

Derivation of the Cayley - Hamilton Theorem for Jordan form matrices. A matrix in Jordan form is a block sum of elementary Jordan $k \times k$ matrices $\left(c_{i, j}\right)$ such that $c_{i, i}=\lambda$ for some fixed λ and all values of $i=1$ through k, and $c_{i, j+1}=1$ for $i=1, \ldots, k-1$ with $c_{i, j}=0$ in all remaining cases. If C is such a matrix, then it follows immediately that $\chi_{C}(C)=(C-\lambda I)^{n}=0$.

Suppose now that A is a block sum

$$
A=\left(\begin{array}{cc}
P & 0 \\
0 & Q
\end{array}\right)
$$

where P and Q are square matrices. For upper triangular matrices of this type we have $\chi_{A}=\chi_{P} \cdot \chi_{Q}$, and it follows that if $\chi_{P}(P)=0$ and $\chi_{Q}(Q)=0$, then

$$
\chi_{A}(A)=\chi_{P}(A) \cdot \chi_{Q}(A)=\left(\begin{array}{cc}
\chi_{P}(P) \chi_{Q}(P) & 0 \\
0 & \chi_{P}(Q) \chi_{Q}(Q)
\end{array}\right)
$$

is zero. By induction a similar result holds for block sums with an arbitrary finite number of summands, and if A is in Jordan form, say $A \sim B_{1} \oplus \cdots \oplus B_{r}$, where each B_{j} is an elementary Jordan matrix, then we see that

$$
\chi_{A}(t)=\prod \chi_{B_{j}}(t) \quad \text { and } \quad \chi_{A}(A)=\prod \chi_{B_{j}}\left(B_{j}\right)
$$

and by the previous discussion each factor on the right hand side of the second equation is zero. This yields the desired identity $\chi_{A}(A)=0 . ■$

Final remark. The characteristic polynomial can be defined for an arbitrary square matrix, and it has the following key property: If $B=P^{-1} A P$ where P is an invertible matrix, then $\chi_{B}=\chi_{A}$. However, the definition of the polynomial and the proof of its key property use the theory of determinants, which has not yet been covered in the course.

