8 A. Prana any decomposition
All vecturspacessimite dimes, oven \mathbb{C}
We want to describe
standard (or canonical)
forms for describing a lineartransformation $T: V \rightarrow V$ which does not have a basis of eigenvectors.

Let's begin by assuming $T: V \rightarrow V$ is in triangular form for some ordered basis $\left\{w_{1}, \ldots, w_{n}\right\}: T_{u_{j}}=\sum_{i \leq j} a_{i j} w_{i}$
Lemma 1 Let $f(t)=\pi\left(t-a_{i n}\right)$. Then $f(T)$ is strictly upper triau gulas; see., all diagonal entries arezero.
Proof. Notice first that each T^{k} is in triangular form. Also, the (i, i) dicegonal entry of $f(T)$ is $f\left(a_{n i}\right)$, which is zero.

Lemma 2 Suppose that $T: V \rightarrow V$ is strictly, upper triangular. Then $\mathbb{T}^{n}=0$, where $n=\operatorname{dim} V$.

Proof. Let $V_{k}=\operatorname{Span}\left\{w_{1}, \ldots, u_{k}\right\}, 1 \leq k \leq_{n}$
Then $T\left[V_{k}\right] \subseteq V_{k-1}$ of $k>0$ and
$T\left[V_{1}\right]=\{0\}$. By induction this nears that

$$
T j\left[V=V_{n}\right] \subseteq V_{n-j,} \text { so } T\left[V_{n}\right] \subseteq\{0\}
$$

Lemma 3 Let $\lambda_{1}, \ldots, \lambda_{r}$ be the eigenvalues of T. Then there is some $M>0$ such that $\Gamma\left(T-\lambda_{j} I\right)^{M}=0$ on V.

Proof By the first turd lemmas we know r that if $g(t)=f(t)^{n}$, then $g(T)=0$. Now the constants in the linear factors $\left(t-a_{i i}\right)$ are the eigenvalues of T (this was an exercise). Suppose now that we
form $h(t)$ from $f(t)$ by adding a product of linear factors $\left(t-\lambda_{j}\right)$, say $f_{1}(t)$, so that

$$
\begin{aligned}
& h(t)=f_{1}(t) f(t)=\prod_{j}\left(t-\lambda_{j}\right)^{M_{0}} \text {. Then } \\
& h(t)^{n}=f_{1}(t)^{n} f(t)^{n} \Rightarrow \\
& h(T)^{n}=f_{1}(T)^{n} f(T)^{n}=f_{1}(T)^{n} \cdot 0=0 \\
& M \\
& \pi\left(T-\lambda_{j} I\right)^{n M_{0}} \cdot
\end{aligned}
$$

Def. $T: V \rightarrow V$ as before. Let $V_{\lambda}=$ all $v \in V$ sit. for some $m \geqslant 1,(T-\lambda I)^{m}=0$.

Lemma $4 V_{\lambda}$ is a vector subspace of V, and I maps V_{λ} into it self.
Proof $(T-\lambda I)^{m(1)} v_{1}=0=(T-\lambda I)^{m(2)} V_{2}=0$

$$
\Rightarrow(1-\lambda I)^{m(1)+m(2)} v_{1}+v_{2}=0,(1-\lambda I)^{m(1)} c v=0 .
$$

Also, if $(T-\lambda I)^{m} v=0$, clavi
$(T-\lambda I)^{m} T v=0$. This follows be cause the ft haudside equals $T(T-\lambda I)^{m} V=$ $T O=0$.

Primary Decomposition Theorem. Let $\lambda_{1}, \ldots, \lambda_{k}$ be the eigen values of $T_{\text {- }}$ Then every $V \in V$ has a unique decomposition as $\sum_{j} v_{j}$ where $v_{j} \in V_{\lambda_{j}}$ 。

Manipulations with polynomials have played a significant role thus for in this section. The proof of the theorem will require still more use of polynomials.
Lemma 5. There is some o >0 such that $(T-\lambda I)^{q} \operatorname{sends} V_{a}$ to $\{0\}$.

Proof. Let x_{1}, \ldots, x_{p} be a basis for V_{λ}, so forech i) $(1-\lambda I)^{q_{i}} x_{i}=0$ for some q_{i}. Therefore $q=\max _{\left\{q_{i}\right.}\left\{\right.$ implies $(t-\lambda I)_{x_{i}=0}^{q}$, all i Since $\left\{x_{i}\right\}$ is a bus is, $(F-\lambda I)^{q}=0$ on V_{λ}.

Note We might as well take the exponent M in Lemma 3 to be so
large that $\left(T-\lambda_{j} I\right)^{M}$ is zero on $V_{\lambda_{j}}$ for each j.
The principal ideal property implies that $\operatorname{Ann}(\mathrm{T})=$ all polynomials p such that $p(T)=0$ is the set of all multiples of some polynomial of minimal degree. Over the complex numbers this means that it is a product of powers of linear polynomials (t -) where runs through some of the e'vals of T. In fact, it runs through ALL the eigenvalues. To see this, given a vector v let Ann (v) be the set of all polys $h(t)$ such that $\mathrm{h}(\mathrm{T}) \mathrm{v}=0$. Then as before $\operatorname{Ann}(\mathrm{v})$ is the set of all multiples of some least degree polynomial and $\operatorname{Ann}(T)$ is contained in Ann (v). Therefore the minimal polynomial in $\mathrm{Ann}(\mathrm{T})$ is a multiple of the minimal polynomial in $\mathrm{Ann}(\mathrm{v})$. If we choose v to be an eigenvector for then $\operatorname{Ann}(v)$ is all multiples of $(\mathrm{t}-\mathrm{)}$. Therefore the minimal polynomial in Ann (T) has a linear factor of this form (in fact, a higher power of the linear polynomial might divide the minimal polynomial in Ann (T), but at least we know that some power does so).

Digression on polynomials
Principal Ideal Propertita Let I be monamsty / polynomials over a field \mathbb{F} such that
$f, g \in J \Rightarrow f+g \in J_{g}$
$f \in J, h \in \mathbb{F}[t] \Rightarrow h \cdot f \in J$.
Then either $J=\{0\}$ on J is the ret of all polynomials which are multiples of a fixed polynomial of least degree.

This is a concequance of the "org division of polynomials' discussed in Chaptan 4 of Axles.
CONSEQUENCE. Suppose $p_{1}, \ldots, p_{k} \in T[t]$ such that each p_{j} is a product of triear factors and no polynomial $(t-c)$ divides every $p j$. Then there are polynomials s' such that $\sum s_{j} p_{j}=1$.

EXAMPLE. Take $(t-a),(t-b)$ where $a \neq b$. Then $1=\frac{(t-a)-(t-b)}{b-a}$.
Proof of the Primary Decomposition
Theorem
Let $\lambda_{1}, \ldots, \lambda_{r}$ be the eigenvalues of T, and choose N such that

$$
\begin{aligned}
& p(T)=\prod_{j=1}^{r}\left(-\lambda_{j}\right)^{N}=0 \text { on } V \\
& \text { Let } q j(t)=\prod_{k \neq j}\left(t-\lambda_{k}\right)^{N} \text {. Then }
\end{aligned}
$$

the polynomials oo have no common linear factors, so the Principal Ideal Property miplies that $1=\sum s_{j}(t)_{q_{j}}(t)$ for suitable polynomials $s_{j}(t)$. It follows that

$$
V=\sum s_{j}(T)_{g_{i}}(T) V_{\text {. for all }} v \in V \text {. }
$$

If $v_{j}=S_{j}(T)_{q_{j}}(T) v$, then

$$
\begin{aligned}
& \left(T-\lambda_{j} I\right)^{N} v_{j}=s_{j}(T) q_{f}(T)\left(T-\lambda_{j} \cdot I\right)^{N} v \\
& =s_{j}(T)_{p}(T)_{v}=s_{j}(T) O=0,
\end{aligned}
$$

Note So that $V_{j} \in V_{\lambda_{j}}$ * Hence $V=\sum V_{\lambda_{j}}$. also that
$\left(T-\lambda_{j}\right)^{N} V_{j}$$T_{0}$ To complete the proof, we mint shown $\begin{gathered}\left(1-\lambda_{2}\right)^{2} \\ =0\end{gathered} V_{\lambda_{j}} \cap\left(\sum_{k \neq j} V_{\lambda_{k}}\right)=\{0\}$.

Assume we hare $x_{j} \in V_{\lambda_{j}}+x_{k} \in V_{\lambda_{k}}$ (all k) such that $x_{j}=\sum_{k \neq j} x_{k}$
A andy the identity $I=\sum_{m} S_{m}(T) q_{m}(T)$ to to th sides. Now $q_{m}(T)_{x_{j}}=0$ if $m \neq j$ So that $\sum_{k \neq \pm} x_{k}=x_{j}=s_{j}(T) q_{j}(T) x_{j}=$ $s_{j}(T) q_{j}(T) \sum_{k \neq j} x_{k}$. Now r $\left(t-\lambda_{k}\right)^{N}$ is a factor of $q_{j}(t)$ if $h \not z_{j}$, so

$$
\begin{aligned}
& q_{j}(T) x_{k}=0 \quad \text { (recall that } \\
& \left(T-\lambda_{k} I\right)^{N} x_{k}=0 \text { by the chrice of } N
\end{aligned}
$$

on page 4A). It follows that

$$
g_{j}(T)_{q_{j}}(T) \sum x_{k}=0 \text {, which in }
$$

turn implies that $x_{j}=0$, so that

$$
V_{\lambda_{j}} \cap\left(\sum_{k \neq j} V_{\lambda_{k}}\right)=\theta\{0\}
$$

Finally to prove the decomposition $v=\sum v_{j}$ is unique, suppose we. also have $\sum v_{j}{ }^{\prime}=v$. Then

$$
\begin{aligned}
& \sum v_{j}=\sum v_{j}^{\prime} \Rightarrow \text { for each } i \text {, } \\
& v_{i}-v_{i}^{\prime}=\sum_{k \neq i} v_{k}^{\prime}-v_{k} \text {, and the }
\end{aligned}
$$

preceding argument chars that $O=V_{i}-V_{i}^{\prime}$, or equivalent ll $v_{i}=v_{0}^{\prime}$

