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5.

If in equations (2) m = n, there exists a unique

solution if and only if the corresponding homogeneous equations

 +  + . . . +  = 0

+  + . . . +  =  0

have only the trivial solution.

If they have only the trivial solution, then the column vectors

are independent. It follows that the original n equations in n unknowns

 have a unique solution if they have  solution, since the 

 term by term, of two distinct solutions would be a non-trivial

solution of the homogeneous equations. A solution would exist since

the n independent column vectors form a generating system for the

n-dimensional  of column vectors.

Conversely, let us suppose our equations have  and only 

solution. In this case, the homogeneous equations added term by

term  a solution of the original equations would yield a new solu-

tion to the original equations.  the homogeneous equations have

only the trivial solution.

F.

 theory of determinants that we shall develop in this 

is not needed in Galois theory. The reader therefore, omit this

section if he SO

We assume our field to be c o m m ut a t i v e and consider the

square matrix
 Of the preceding theory only  1, for

homogeneous equations and the notion of
linear dependence are assumed known.
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. . . . . . . . . . . .

 . . . a

of n rows and n columns. We shall  a certain function of this

matrix whose value is an element of our field. The function  be

called the determinant and  be denoted by

 . . 

o r b y  if we wish to consider it as a function of the

column vectors A,, A,, . . . A,, of (1). If we keep  the columns but A,

constant and consider the determinant as a function of A,, then we

 and sometimes even only D.

Definition. A function of the column vectors is a determinant if

it satisfies the following three axioms:

1. Viewed as a function of  column A, it is linear and homogeneous, 

( 3 )  =   +  

(4)  = 

2. Its value is  if the adjacent columns A, and  are equal.

3. Its value is = 1 if  A, are the unit vectors  where

 Hencefor th ,  0   the   e lement
of a field.



The question as to whether determinants exist  be left 

for the present. But we  from the axioms:

a) If we put c  0 in (4) we get: a determinant is 0 if  of

the columns is 0.

 =  + or a determinant remains unchanged

if we add a multiple of  column to an adjacent column. Indeed

 +   =   +   =  

because of axiom 2.

c) Consider the two columns A, and  We  replace them by

A, and  +  A  subtracting the second from the first we  replace

.them by  and  + A,,  the first to the second we now

.have  and A,, finally, we  -1. We conclude: a 

nant changes sign if we interchange two adjacent columns.

d) A determinant vanishes if  two of its columns are equal.

Indeed, we  bring the two columns  by  after an interchange

of adjacent columns and then use axiom 2. In the  way as in b)

and c) we  now prove the more general 

e)  a multiple of  column to another  not change

the value of the determinant.

f) Interchanging  two columns changes the sign of D.
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 be a permutation of the subscripts

 . . . n). If we rearrange the columns in  . . . , A,, 

 they are  in the natural order, we see that

2
A, ) = 

Here  is a definite sign that  not  on the  values

of the A,. If we substitute  for A, we see that

1
 1 and that the sign  only on the

permutation of the  vectors.

Now we replace  A, by the following linear 

(6) A; =  + . . . +

In computing  . . . ,  we first apply axiom 1 on 

breaking up the determinant into a sum; then in  term we do the

 with  and SO on. We get

( 7 )  . . 
1 2

1 2
 . 

1
,A,, . . . ,A, 

2

where  independently from 1 to n. Should two of the indices

 be  then D(  A, , . . . ,
2

 = 0; we need therefore keep

 those terras in which ( vi,  . . . , is a permutation of

n). This gives

=  A,).
(

 . . . . 

 runs through  the permutations of

n) and where  stands for the sign associated with that

permutation. It is important to remark that we would have arrived at

the  formula (8) if  D satisfied only the first two



1.5

of  axioms.

 conclusions  be derived from (8).

 first assume axiom 3 and specialize the  to the unit 

tors  of (5). This makes  where  is the column  of

the matrix of the  (8) yields now:

1
+

giving us an  formula for determinants and showing that they are

uniquely determined by  axioms provided they exist at 

 expression (9) we retum to formula (8) and get

(10)  = 

This is the so-called multiplication theorem for determinants. At

the left of (10) we have the determinant of an n-rowed matrix 

ments  are given by

 =

 is  by multiplying the elements of the i  th row of

and

Let us now replace D in (8) by a  F(A,, . . . , A,) that

satisfies  the first two axioms. Comparing with (9) we find

 B,).

Specializing A, to the unit vectors  leads to

(12)  . . .  =  . . . 

with c =  . . 
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Next we specialize (10) in the following way: If  is a certain

 from 1 to n-l we put A, =  for  i, i+ 1

 =  +  ,  = 0. Then D( A,, A,,  . . , A,  =  since 

umn is  Thus,  , . . ,  = 0; but this determinant differs

from that of the elements  only in the respect that the 

has been made equal to the i-tb. We therefore see:

A determinant vanishes if two adjacent rows are equal.

 term in (9) is a  where precisely  cornes

from a given  the i-th. This shows that the determinant is

linear and homogeneous if çonsidered as function of this row. If,

finally, we  for eaeh  the corresponding unit 

terminant is  1 since the matrix is the  as that in  the 

 are unit vectors. This shows that a determinant satisfies 

 if we consider it as function of the row vectors. In view

of the uniqueness it follows:

A determinant  unchanged if we transpose the 

tors into  vectors, that is, if we  the matrix

main diagonal.

A determinant vanishes if  two  are equal. It changes

sign if we interchange  two rows. It  unchanged if we 

a multiple of  to another.

We shall now prove the existence of determinants. For a 1-rowed

matrix a  the element  is the determinant. Let us assume the

existence of (n  1)  rowed determinants. If we consider the n-rowed

matrix  we  associate  certain (n  1)  rowed determinants

in the following way: Let  be a particular element in (1). We
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 the i-th  and k-th column in (1) and take the determinant

of the remaining (n  1)  rowed matrix. This determinant multiplied by

 be called the cofactor of a  and be denoted by 

The distribution of the sign  1) follows the chessboard pattern,

namely,

 i be  number from 1 to n. We consider the following

 D of the matrix (1):

(13) D =  . .

 is the sum of the  of the i-th  and their cofactors.

Consider this D in its dependence on a given column,  A,.

For  k,  linearly on A, and  not  on it;

for  k,  not  on A, but  is  element of this

column. Thus, axiom 1 is satisfied. Assume next that two adjacent

 A, and are equal. For  k, k + 1 we have then two

equal columns in SO that A,,  0. The determinants used in the

 of  and are the  but the signs are opposite

 =  whereas  = a,  Thus D = 0 and axiom 2

holds. For the  case A,  =  . , n) we have

= 0 for  i while a,, = 1,  1.  D = 1 and

this is axiom 3. This proves both the existence of an n-rowed
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determinant as well as the truth of formula  the so-called develop-

ment of a determinant according to its i-th row. (13)  be generalized

as follows: In our determinant replace the i-th row by the j-th row and

develop according to this new row. For i  j that determinant is 0 and

for i = j it is D:

D for j  i
 t . . .  =

0 forj  i

If we interchange the rows and the columns we get the

following formula:

D for h  k
(15)  t   .  .   =

0 for h  k

Now let A represent an n-rowed and B an m-rowed square matrix.

By  A  B  we  their determinants.  C be a matrix of n rows

and m columns and form the square matrix of n  m rows

where 0 stands for a zero matrix with m rows and n columns. If we 

sider the determinant of the matrix (16) as a function ofthecolumns of A

only, it satisfies obviously the first two of  axioms. Because of (12)

its value is c .  A  where c is the determinant of (16) after substituting

unit vectors for the columns of A. This c still  on B and 

sidered as function of the rows of B satisfies the first two axioms.

Therefore the determinant of (16) is  A  .  B  where d is the 
case of the determinant of (16) with unit vectors for the columns of A

as  as of B. Subtracting multiples of the columns of A from

C we  replace C by 0. This shows d  1 and  the formula
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In a similar fashion we  have shown

A 0
C B

=

The formulas  (18) are  cases of a general theorem

by Lagrange that  be derived from them. We refer the reader to 

textbook on determinants  in most applications (17) and (18)

are sufficient.

We now investigate what it  for a matrix if its determinant

is zero. We  easily establish the following

a) If A,, A,, . , . ,  are linearly dependent, then

 A,, . . . A,) = 0. Indeed  of the vectors,  A,, is then a

linear combination of the other columns; subtracting this linear

bination from the column A, reduces it to 0 and SO D = 0.

b) If  vector B  be expressed as linear combination of

A,, A,, . . . A, then  . A,,)  0. Returning to (6) and

(10) we  the values for  in  a fashion that every

 For this  the left  in (10) is 1 and 

A,) on the right  0.

 Let A,, A,, . . . , A,, be linearly independent and B  other

vector. If we go  to the components in the equation

 +  . . .  By = 0 we obtain n linear homogeneous
equations in the n  1 unknowns x  x  . . ,  y. Consequently,

there  a non-trivial solution. y must be  0 or else the

would be linearly dependent. But then we  compute

B  of this equation as a linear combination of A,, A,, . . . , 
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Combining these results we obtain:

A determinant vanishes if and only if the column vectors (or the

row vectors) are linearly dependent.

Another way of expressing this result is:

The set of n linear homogeneous equations

 + . . . +  =  0 ( i  =  

in n unknowns has a non-trivial solution if and only if the determinant

of the coefficients is zero.

Another result that  be deduced is:

If A,, are given, then their linear combinations 

represent  other  B if and only if D (A  A,, . . . ,  0.

Or:

The set of linear equations

(19)  +  . . .  = ( i  =  

has a solution for arbitrary values of the  if and only if the 

nant  is  0. In that case the solution is unique.

We finally express the solution of (19) by  of determinants

if the determinant D of the  is  0.

We multiply for a given k the i-th equation with  and add the

equations. (15) gives

( 2 0 )  = ( k  =  

and this gives  The right  in (12)  be written as the

determinant obtained from D by replacing the k-th column by

b,,  . . ,  The  thus obtained is known as Cramer’s 




