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F. Determinants. »

The theory of determinants that we shall develop in this chapter
is not needed in Galois theory. The reader may, therefore, omit this
section if he SO desires.

We assume our field to be com mut a ti v e and consider the

square matrix

1) Of the preceding theory only Theorem 1, for
homogeneous equations and the notion of
linear dependence are assumed known.
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of n rows and n columns. We shall define a certain function of this
matrix whose value is an element of our field. The function will be
called the determinant and will be denoted by
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orby D(AI,AZ, ...A_ ) if we wish to consider it as a function of the

column vectors A,, A,, . . .A,, of (1). If we keep all the columns but A,

constant and consider the determinant as a function of A,, then we

write D, (A, ) and sometimes even only D.

Definition. A function of the column vectors is a determinant if

it satisfies the following three axioms:

1. Viewed as a function of any column A, it is linear and homogeneous, i.e,,
(3) D(A, + Atl) = Dk(Ak) + Dk(Af()
@ D(eA )= c-Dy(A,)

2. Tts value is = QU if the adjacent columns A, and A,  are equal.

k+1

3. Its value is = 1 if all A, are the unit vectors U, where

1) Henceforth, 0 will denote the zero element
of a field.
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The question as to whether determinants exist will be left open
for the present. But we derive consequences from the axioms:

a) If we put ¢ = 0 in (4) we get: a determinant is 0 if one of
the columns is 0.

b) Dk(Ak) = Dk(Ak + CA

lHl))r a determinant remains unchanged

if we add a multiple of one column to an adjacent column. Indeed
D, (A, + CAR:I) = Dk( Ak) + ch(Akll) = D (A,)
because of axiom 2.
¢) Consider the two columns A, and A, ;. We may replace them by

A, and A., + A,; subtracting the second from the first we may replace
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them by -~ A, and A, + A,, adding the first to the second we now

k+1
have — A,,, and A,, finally, we factor out -1. We conclude: a determi-
nant changes sign if we interchange two adjacent columns.

d) A determinant vanishes if any two of its columns are equal.
Indeed, we may bring the two columns side by side after an interchange
of adjacent columns and then use axiom 2. In the same way as in b)
and ¢) we may now prove the more general rules:

¢) Adding a multiple of one column to another dpeg not change

the value of the determinant.

f) Interchanging any two columns changes the sign of D.



g) Let (v, ,v,,. ..y“) be a permutation of the subscripts
(1,2,...n). If we rearrange the columns in D( A”’l’ AVQ’ C A,,n)
until they are back in the natural order, we see that

D(AV1’AV2"' ‘s Ar; ) = iD(Al,AE yeees AL
Here 1 is a definite sign that does not depend on the special values
of the A,. If we substitute U, for A, we see that
D(le, Uvz’ s 'U?—’n) = £ 1 and that the sign depends only on the
permutation of the unit vectors.

Now we replace each vector A, by the following linear combina-
tion A} of A/ ,A,,..., A

6) A; = b, A + b A+ . .+ DbA.

In computing D(A;,Az' oo ALY We first apply axiom 1 on A

breaking up the determinant into a sum; then in each term we do the

same with A) and SO on. We get

VLAY, LAY = D(b, A, ,b
(7) D(A},A,, AL) , VE v, ( V1Y
- 3 b"’l b
VI’VZ"“’VH
where each v, runs independently from 1 to n. Should two of the indices

A b, A, )
24 1
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V,2° Y, lﬁl‘l Vn

b, D(A, A,, ... A,
D (A, A )

v2 n
v, be equal, then D( A, , A, ,...,A, ) = 0; we need therefore keep

1 2 n
only those terras in which (vi, v, ..., v ) is a permutation of

2
(1,2,...,n). This gives

(8) D(A},A;,...,A!)
=D(A1,A2,...,A,).(vl,l?jvn) ibvll'bvzz ..... bvnn
where (v,,v,, ...,v,) runs through all the permutations of
(1,2,...,n) and where I stands for the sign associated with that

permutation. It is important to remark that we would have arrived at

the same formula (8) if our function D satisfied only the first two



of our axioms.

Many conclusions may be derived from (8).

We first assume axiom 3 and specialize the A, to the unit vec-
tors U, of (5). This makes A, = B, where B, is the column vector of
the matrix of the hlk_ (8) yields now:

9 D(B,,B,,... ’B“)z(vl:vz,z-:u,vn)i byll-bvaz-... 'bvnn
giving us an explicit formula for determinants and showing that they are
uniquely determined by our axioms provided they exist at all.

With expression (9) we retum to formula (8) and get

(1) D(A!,Al,...,A))=D(A,A,,...,A)D(B,,B,,...,B,).

This is the so-called multiplication theorem for determinants. At
the left of (10) we have the determinant of an n-rowed matrix whose ele-
ments C,, are given by

(11 Cik :v:Eﬂ] 3y by
c,, is obtained by multiplying the elements of the i « th row of
D(A], . VR A ) by those of the k-th column of D(B,,B,,...,B_)
and adding

Let us now replace D in (8) by a function F(A,, . . ., A,) that
satisfies only the first two axioms. Comparing with (9) we find

F(A!,A!,...,A))=F(A,,...,A)D(B,,B,,...,B).
Specializing A, to the unit vectors U, leads to
(12) F(B,,B,,...,B )=c-D(B,,B,,...,B.)

with ¢=F(U,,U,,...,U_)



Next we specialize (10) in the following way: If | is a certain

subscript from 1 to n-1 we put A, = U, for k #£ i, i+ 1
A = U1 +U,,,» A,; = 0. Then D( A,, A,, ,.., A, )= (since one col-

i

umn is (0, Thus, D(A],A},, .. ,A]) = 0; but this determinant differs
from that of the elements b " only in the respect that the i+]-st row

has been made equal to the i-tb. We therefore see:
A determinant vanishes if two adjacent rows are equal.

Each term in (9) is a product where precisely one factor cornes
from a given row, say, the i-th. This shows that the determinant is
linear and homogeneous if ¢onsidered as function of this row. If,
finally, we select for each raw the corresponding unit yector, the de-
terminant is = 1 since the matrix is the same as that in which the cpl-
umns are unit vectors. This shows that a determinant satisfies our
three axioms if we consider it as function of the row vectors. In view

of the uniqueness it follows:

A determinant remajns unchanged if we transpose the row vec-
tors into colymn vectors, that is, if we rotate the matrix aboyt its

main diagonal.

A determinant vanishes if any two rows are equal. It changes
sign if we interchange any two rows. It remgins unchanged if we gdd

a multiple of one row to another.

We shall now prove the existence of determinants. For a 1-rowed
matrix a 1 the element a, itself is the determinant. Let us assume the
existence of (n - 1) » rowed determinants. If we consider the n-rowed
matrix (]) we may associate with it certain (n - 1) - rowed determinants

in the following way: Let a; be a particular element in (1). We
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cancel the i-th row and k-th column in (1) and take the determinant
of the remaining (n - 1) - rowed matrix. This determinant multiplied by
(-1)"* will be called the cofactor of a ,, and be denoted by A, .

The distribution of the sign (- 1)*** follows the chessboard pattern,

namely,

Let i be any number from 1 to n. We consider the following

function D of the matrix (1):

(13) D =a, A, +a,A,+ .. +a,A,.
[t is the sum of the products of the i-th row and their cofactors.
Consider this D in its dependence on a given column, say, A,.
For v £k, Aw depends linearly on A, and a,, does not depend on it;
for p =k, Aik does not depend on A, but a, is one element of this
column. Thus, axiom 1 is satisfied. Assume next that two adjacent

columns A, and A, , are equal. For y # k, k + 1 we have then two

k+1

equal columns in Aw so that A,, = 0. The determinants used in the
computation of A, and A, ., are the same but the signs are opposite
hence, A, = -A,,,, whereas a,, =a, .., Thus D = 0 and axiom 2
holds. For the special case A, = U (v = 1,2,. ., n) we have

a, = 0 for p £ 1 while a,, = 1, Al.i = 1. Hence, D = | and

this is axiom 3. This proves both the existence of an n-rowed
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determinant as well as the truth of formula (13), the so-called develop-
ment of a determinant according to its i-th row. (13) may be generalized
as follows: In our determinant replace the i-th row by the j-th row and
develop according to this new row. For i #£ j that determinant is 0 and
for i =j it is D:
Dforj =1
(14) aj A, +aphApt. . vaghA, = { 0 forj £ i
If we interchange the rows and the columns we get the

following formula:

(15) a, A A, +. . +a A

nk:

D forh=k
1kt 8y {

0 forh £k

Now let A represent an n-rowed and B an m-rowed square matrix.
By | A |,| B | we mean their determinants. Let C be a matrix of n rows
and m columns and form the square matrix of n + m rows

(16) A C
o &)

where 0 stands for a zero matrix with m rows and n columns. If we con-
sider the determinant of the matrix (16) as a function ofthecolumns of A
only, it satisfies obviously the first two of our axioms. Because of (12)
its value is ¢ . A where c is the determinant of (16) after substituting
unit vectors for the columns of A. This c still depends on B and con-
sidered as function of the rows of B satisfies the first two axioms.

Therefore the determinant of (16) is d- A . B where d is the special

case of the determinant of (16) with unit vectors for the columns of A
as well as of B. Subtracting multiples of the columns of A from

C we can replace C by 0. This shows d = 1 and hence the formula



(17) A C
= |A|-|B].
0 B
In a similar fashion we could have shown
(18) A 0
RSV

The formulas (17), (18) are special cases of a general theorem
by Lagrange that can be derived from them. We refer the reader to any
textbook on determinants since in most applications (17) and (18)
are sufficient.

We now investigate what it means for a matrix if its determinant
is zero. We can easily establish the following facts:

a)If A,, A,, ., . ,An are linearly dependent, then
D(A,,A, ..., A) =0. Indeed one of the vectors, say A,, is then a
linear combination of the other columns; subtracting this linear com-
bination from the column A, reduces it to 0 and so D = 0.

b) If any vector B can be expressed as linear combination of
A, A, ... A then D(A,A,, ..., A, # 0. Returning to (6) and
(10) we may select the values for b,, in such a fashion that every
A/ =U,. For this choice the left side in (10) is 1 and hence
D(A,, A, ..., A) on the right side £ 0.

c) Let A,, A,, . .., A, be linearly independent and B any other
vector. If we go back to the components in the equation
Ax,;+ Ax,+...+Ax_ + By =0 we obtain n linear homogeneous
equations in the n + 1 unknowns x ;,x ,,..., ¥, y. Consequently,
there is a non-trivial solution. y must be # 0 or else the
A,A, ..., A, would be linearly dependent. But then we can compute

B out of this equation as a linear combination of A,, A,, ..., A,.
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Combining these results we obtain:

A determinant vanishes if and only if the column vectors (or the
row vectors) are linearly dependent.

Another way of expressing this result is:

The set of n linear homogeneous equations

a,X, +a,x,+...+a x=20 (i 1,2,...,n)

il 2
in n unknowns has a non-trivial solution if and only if the determinant
of the coefficients is zero.

Another result that can be deduced is:

IfA,A,, ... A, arc given, then their linear combinations can
represent any other vector B if and only if D (A [, A, ..., A_)#0.
Or:

The set of linear equations
(19) a; X, + a,x, + . . . +a,x = Db (i=1.2,...,n)
has a solution for arbitrary values of the b, if and only if the determi-
nant of @ is £ 0. In that case the solution is unique.
We finally express the solution of (19) by means of determinants
if the determinant D of the a, is £ 0.
We multiply for a given k the i-th equation with Aik and add the
equations. (15) gives
(20) D x, = A, b, + Ayb, + + A b (k = 1,2,...,n)
and this gives x,. The right side in (12) may also be written as the

determinant obtained from D by replacing the k-th column by

b, b, .., b_. The rule thus obtained is known as Cramer’s rule.





