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(iii) If I is the 2 x 2 identity matrix, then §(I) = 1.

Prove that §(A) = det(A) for all A € Myyo(F). (This result is general-
ized in Section 4.5.)

12. Let {u,v} be an ordered basis for R%. Prove that

o(;j)=1

if and only if {u,v} forms a right-handed coordinate system. Hint:
Recall the definition of a rotation given in Example 2 of Section 2.1.

4.2 DETERMINANTS OF ORDER 2

In this section, we extend the definition of the determinant to n x n matrices
for n > 3. For this definition, it is convenient to introduce the following
notation: Given A € Muxn(F), for n > 2, denote the (n—1) x (n — 1) matrix
obtained from A by deleting row ¢ and column j by A;;. Thus for

12 3
A={4 5 6| €Msya(R),

7 8 9
we have
= 5 6 - 4 5 - 1 3
A11=(8 9>, A13=(7 8)’ and A32=(4 6)’
and for
1 -1 2 -1
-3 4 1 -1
B = 2 -5 _3 8 € M4x4(R)’
-2 6 —4 1
we have

i 1 -1 -1 N R |
st= 2 -5 8 and B42= -3 1 -1]).
-2 6 1 2 -3 8

Definitions. Let A € Myxn(F). If n =1, so that A = (A1), we define
det(A) = A11. For n > 2, we define det(A) recursively as

det(A) = Z(“1)1+JAIJ . det(.g.lj).
j=1
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The scalar det(A) is called the determinant of A and is also denoted by |A|.
The scalar

(=1)™ det(Aij)
is called the cofactor of the entry of A in row i, column j.
Letting
cij = (—1)" det(4yy)

denote the cofactor of the row i, column j entry of A, we can express the
formula for the determinant of A as

det(A) = Anenn + Azciz + -+ - + AinCin.

Thus the determinant of A equals the sum of the products of each entry in row
1 of A multiplied by its cofactor. This formula is called cofactor expansion
along the first row of A. Note that, for 2 x 2 matrices, this definition of
the determinant of A agrees with the one given in Section 4.1 because

det(A) = Ay (—1)1+1 det(/in) + Alz(-—].)l-"“z det(ﬁm) = A11A2; — Aj2Aa.

Example 1
Let

1 3 -3
A=|-3 -5 2) € Maxg(R).
-4 4 -6
Using cofactor expansion along the first row of A, we obtain
det(A) = (—1)1+1A11 . det(za.u) + (—1)1+2A12 . det(z‘ilz)

+ (—1)1+3A13- det(/i'm)
= (—=1)%(1)- det (_i _g) + (-1)3(3)- det (:z _2)
+ (=1)4(=3)- det (:2 _Z>
=1[-5(—6) — 2(4)] — 3[-3(~6) — 2(=4)] — 3[-3(4) — (-5)(-4)]
= 1(22) — 3(26) — 3(—32)
=40. ¢
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Example 2
Let

0 1 3
B= (-2 -3 —5) € M3zx3(R).
4 -4 4
Using cofactor expansion along the first row of B, we obtain
det(B) = (—1)1+! By, - det(B11) + (—1)*2 By, - det(B1a)
+ (—-1)1+3313' det(Bm)
= (~1)2(0)- det (:i “i) + (=1)3(1)- det (_421 ‘i)
+(~1)%(3) det (‘i :2) .
=0-1[-2(4) - (-5)(4)] +3[-2(-4) — (-3)(4)]
=0-1(12) + 3(20)

=48. ¢
Example 3
Let
2 0 0 1
0 1 3 -3
C = _2 _3 _5 2 € M4x4(R).
4 -4 4 -6

Using cofactor expansion along the first row of C and the results of Examples 1
and 2, we obtain
det(C) = (=1)%(2)- det(C11) + (—1)%(0)- det(C12)
+ (=1)*(0) - det(C3) + (—1)°(1) - det(Cha)

1 3 -
=(-1)?(2)-det { -3 -5 2| +0+0
-4 4 -6

0 1 3
+ (~1)%(1)- det (—2 -3 —5)
4 -4 4

= 2(40) + 0+ 0 — 1(48)
=32. ¢
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Example 4

The determinant of the n x n identity matrix is 1. We prove this assertion by
mathematical induction on n. The result is clearly true for the 1 x 1 identity
matrix. Assume that the determinant of the (n — 1) x (n — 1) identity matrix
is 1 for some n > 2, and let I denote the n x n identity matrix. Using cofactor
expansion along the first row of I, we obtain

det(I) = (—1)*(1)- det(f11) + (—1)3(0) - det(f12) + - --
+ (=1)1+"(0)- det(f1n)
=1(1) 404+ +0
=1

because [1; is the (n — 1) x (n — 1) identity matrix. This shows that the
determinant of the n x n identity matrix is 1, and so the determinant of any
identity matrix is 1 by the principle of mathematical induction. 4

As is illustrated in Example 3, the calculation of a determinant using
the recursive definition is extremely tedious, even for matrices as small as
4 x 4. Later in this section, we present a more efficient method for evaluating
determinants, but we must first learn more about them.

Recall from Theorem 4.1 (p. 200) that, although the determinant of a 2x 2
matrix is not a linear transformation, it is a linear function of each row when
the other row is held fixed. We now show that a similar property is true for
determinants of any size.

Theorem 4.3. The determinant of an n X n matrix is a linear function
of each row when the remaining rows are held fixed. That is, for 1 <r <mn,

we have
( 0:1 \ (a.l\ (0.1\

Qr—1 ar—1 Qr—1
det [ut+kv|=det| u |+kdet]| v
Qr41 Qr41 Qr41

k an / \ Qn } \ an /
whenever k is a scalar and u, v, and each a; are row vectors in F™.

Proof. The proof is by mathematical induction on n. The result is imme-
diate if n = 1. Assume that for some integer n > 2 the determinant of any
(n—1) X (n — 1) matrix is a linear function of each row when the remaining
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rows are held fixed. Let A be an nx n matrix with rows a,, as, ..., a,, respec-
tively, and suppose that for some 7 (1 < r < n), we have a, = u+ kv for some
u,v € F* and some scalar k. Let u = (b1, b2,...,b,) and v = (c1,¢2,...,¢n),
and let B and C be the matrices obtained from A by replacing row r of A by
u and v, respectively. We must prove that det(A) = det(B) + kdet(C). We
leave the proof of this fact to the reader for the case r = 1. For r > 1 and
1 < j < n, the rows of A, Byj, and Cy; are the same except for row r — 1.
Moreover, row r — 1 of 1711,- is

(b + keas. . bj-1+kcj-1, bj+1 + ij.H, veeybn + kc,,),

whjcl}_ is the sum of row r— 1 of Blj and k times row r — 1 of C'lj. Since Blj
and Cy; are (n — 1) x (n — 1) matrices, we have

det(ﬁlj) = det(.élj) + kdet(élj)

by the induction hypothesis. Thus since A;; = By; = C1;, we have

n

det(4) = ) (~1)'* Ay;- det(4y;)

i=1
= Z(—1)1+jA1j . [det(.élj) + kdet(élj)]
=1
=Y (1) Ay det(Byy) + kY (~1)1 Ay det(Cyy)
i=1 j=1
= det(B) + kdet(C).

This shows that the theorem is true for n x n matrices, and so the theorem
is true for all square matrices by mathematical induction. | |

Corollary. If A € M, xn(F) has a row consisting entirely of zeros, then
det(A) = 0.

Proof. See Exercise 24. [ |

The definition of a determinant requires that the determinant of a matrix
be evaluated by cofactor expansion along the first row. Our next theorem
shows that the determinant of a square matrix can be evaluated by cofactor
expansion along any row. Its proof requires the following technical result.

Lemma. Let B € M,xn(F), where n > 2. If row i of B equals ey for
some k (1 < k < n), then det(B) = (—1)"** det(B;).
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Proof. The proof is by mathematical induction on n. The lemma is easily
proved for n = 2. Assume that for some integer n > 3, the lemma is true for
(n—1) x (n— 1) matrices, and let B be an n x n matrix in which row ¢ of B
equals e for some k (1 < k£ < n). The result follows immediately from the
definition of the determinant if i = 1. Suppose therefore that 1 < i < n. For
each j # k (1 £ j < n), let Ci; denote the (n —2) x (n — 2) matrix obtained
from B by deleting rows 1 and i and columns j and k. For each j, row i — 1
of B,; is the following vector in F?~1:

er—1 ifj<k
0 ifj=k
€k ifj>k

Hence by the induction hypothesis and the corollary to Theorem 4.3, we have
(—1)E-D+HE-D det(Cy;) fj<k
det(By;) =40 ifj=k
(_1)(i—l)+k det(C,-j) ifj>k.

Therefore .
n
det(B) = Y _(~1)+By;- det(By;)
i=1
=3 (1) By, det(By;) + »_(—1)"+/By;- det(By;) -
i<k i>k
=3 (-1)"By- [(—D“'” k1) det(Cij)]
i<k
+ Z(—I)H'jBIj . [(—1)(i_1)+k det(C.'j)]
i>k

= (1) | > (-1)"+By;- det(Cy)
i<k

+ Z(—1)1+0—1)B1j - det(Cy;) | -
i>k

Because the expression inside the preceding bracket is the cofactor expan-
sion of B;j along the first row, it follows that

det(B) = (—1)"** det(Bjy).

This shows that the lemma is true for n x n matrices, and so the lemma is
true for all square matrices by mathematical induction. [ |
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We are now able to prove that cofactor expansion along any row can be
used to evaluate the determinant of a square matrix.

Theorem 4.4. The determinant of a square matrix can be evaluated by
cofactor expansion along any row. That is, if A € Mpx,(F), then for any
integer i (1 <i<n),

det(A) = i(—'l)i—‘—inj . det(A,-j).

j=1

Proof. Cofactor expansion along the first row of A gives the determinant
of A by definition. So the result is true if i = 1. Fix ¢ > 1. Row ¢ of A can
be written as }°7_; Aijej. For 1 < j <mn, let B; denote the matrix obtained
from A by replacing row ¢ of A by e;. Then by Theorem 4.3 and the lemma,
we have

det(A4) = i Ay; det(Bj) = i(—l)i-i'inj . det([iij). [ |

Corollary. If A € M, xn (F) has two identical rows, then det(A) = 0.

Proof. The proof is by mathematical induction on n. We leave the proof
of the result to the reader in the case that n = 2. Assume that for some
integer n > 3, it is true for (n — 1) x (n — 1) matrices, and let rows r and
s of A € Mpxn(F) be identical for r # s. Because n 2> 3, we can choose an
integer ¢ (1 < ¢ < n) other than r and s. Now

det(A) = i(-—l)i'{-inj . det(x‘iij)

j=1

by Theorem 4.4. Since each Aij is an (n — 1) x (n — 1) matrix with two
identical rows, the induction hypothesis implies that each det(fi,-j) =0, and
hence det(A) = 0. This completes the proof for n x n matrices, and so the
lemma is true for all square matrices by mathematical induction. | |

It is possible to evaluate determinants more efficiently by combining co-
factor expansion with the use of elementary row operations. Before such a
process can be developed, we need to learn what happens to the determinant
of a matrix if we perform an elementary row operation on that matrix. The-
orem 4.3 provides this information for elementary row operations of type 2
(those in which a row is multiplied by a nonzero scalar). Next we turn our
attention to elementary row operations of type 1 (those in which two rows
are interchanged).
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Theorem 4.5. If A € M,xn(F) and B is a matrix obtained from A by
interchanging any two rows of A, then det(B) = — det(A).

Proof. Let the rows of A € Myxn(F) be aj,az,...,a,, and let B be the
matrix obtained from A by interchanging rows r and s, where r < s. Thus

(azl\ (a:l\

A=]:]| and B=

ag Qr

\an) \an)
Consider the matrix obtained from A by replacing rows r and s by a, + as.
By the corollary to Theorem 4.4 and Theorem 4.3, we have

(o (o (o)

a,. + a_., ar as
0 =det : = det : + det

ar + ag ar +ag ar+as

\aw ) \a /) e

SRNAENCAENG
a, ar as as
=det| : | 4+det| : | +det| : | +det
Q, Qg Qr Qs
o/ \a) e/ \an/
= 0+ det(A) + det(B) +0.
Therefore det(B) = — det(A). [ |

We now complete our investigation of how an elementary row operation
affects the determinant of a matrix by showing that elementary row operations
of type 3 do not change the determinant of a matrix.

Theorem 4.6. Let A € M, x,(F), and let B be a matrix obtained by
adding a multiple of one row of A to another row of A. Then det(B) = det(A).
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Proof. Suppose that B is the n X n matrix obtained from A by adding k
times row 7 to row s, where r # s. Let the rows of A be a;,a2,...,a,, and
the rows of B be by,bs,...,b,. Then b; = a; for ¢ # s and b, = a, + ka,.
Let C be the matrix obtained from A by replacing row s with a,. Applying
Theorem 4.3 to row s of B, we obtain

det(B) = det(A) + kdet(C) = det(A)
because det(C) = 0 by the corollary to Theorem 4.4. [ |

In Theorem 4.2 (p. 201), we proved that a 2 x 2 matrix is invertible if
and only if its determinant is nonzero. As a consequence of Theorem 4.6, we
can prove half of the promised generalization of this result in the following
corollary. The converse is proved in the corollary to Theorem 4.7.

Corollary. If A € My xn(F') has rank less than n, then det(A) = 0.

Proof. If the rank of A is less than n, then the rows a;,as,...,a, of A are
linearly dependent. By Exercise 14 of Section 1.5, some row of A, say, row r,
is a linear combination of the other rows. So there exist scalars ¢; such that

ar =101+ + Cro1r-1 + Cry1Grp1 + -0 - + Cpln.

Let B be the matrix obtained from A by adding —c; times row ¢ to row r for
each ¢ # r. Then row r of B consists entirely of zeros, and so det(B) = 0.
But by Theorem 4.6, det(B) = det(A). Hence det(A) =0.

The following rules summarize the effect of an elementary row operation
on the determinant of a matrix A € Mpyxn(F).

(a) If B is a matrix obtained by interchanging any two rows of A, then
det(B) = —det(A).

(b) If B is a matrix obtained by multiplying a row of A by a nonzero scalar
k, then det(B) = k det(A).

(c) If B is a matrix obtained by adding a multiple of one row of A to another
row of A, then det(B) = det(A).

These facts can be used to simplify the evaluation of a determinant. Con-
sider, for instance, the matrix in Example 1:

1 3 -3
A=|-3 -5 2].
-4 4 -6
Adding 3 times row 1 of A to row 2 and 4 times row 1 to row 3, we obtain
1 3 -3
M=1{0 4 -7

0 16 -18
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Since M was obtained by performing two type 3 elementary row operations
on A, we have det(A) = det(M). The cofactor expansion of M along the first
row gives
det(M) = (—1)'*1(1) - det(My1) + (=1)1*2(3) - det(M2)
+ (=1)1+3(=3) - det(Mi3).

Both~]\~4 12 and M;s have a column consisting entirely of zeros, and so
det(A12) = det(Md13) = O by the corollary to Theorem 4.6. Hence

det(M) = (=1)1+1(1)- det (M)

= (—1)1*1(1)- det (l‘é _"i;)
= 1[4(—18) — (=7)(16)] = 40.

Thus with the use of two elementary row operations of type 3, we have reduced
the computation of det(A) to the evaluation of one determinant of a 2 x 2
matrix.

But we can do even better. If we add —4 times row 2 of M to row 3
(another elementary row operation of type 3}, we obtain

1 3 -3
P=|0 4 -T7].
0 0 10

Evaluating det(P) by cofactor expansion along the first row, we have
det(P) = (—1)1*1(1). det(Py;)

= (=1)}1(1)- det (g ;g) =1-4-10 = 40,

as described earlier. Since det(4) = det(M) = det(P), it follows that
det(A) = 40.

The preceding calculation of det(P) illustrates an important general fact.
The determinant of an upper triangular matriz is the product of its diagonal
entries. (See Exercise 23.) By using elementary row operations of types 1
and 3 only, we can transform any square matrix into an upper triangular
matrix, and so we can easily evaluate the determinant of any square matrix.
The next two examples illustrate this technique.

Example 5
To evaluate the determinant of the matrix

0o 1 3
B=[|-2 -3 -5
4 -4 4
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in Example 2, we must begin with a row interchange. Interchanging rows 1
and 2 of B produces

-2 -3 -5
c={o0 1 3
4 -4 4

By means of a sequence of elementary row operations of type 3, we can
transform C into an upper triangular matrix:

-2 -3 -5 -2 -3 -5 -2 -3 -5
o 1 3|— 0 1 3| — o 1 3.
4 —4 4 0 ~-10 -6 0 0 24

Thus det(C) = —2-1-24 = —48. Since C was obtained from B by an inter-
change of rows, it follows that

det(B) = —det(C) =48. ¢

Example 6

The technique in, Example 5 can be used to evaluate the determinant of the
matrix

2 0 0 1
6 1 3 -3
-2 -3 -5 2
4 -4 4 -6

C =

in Example 3. This matrix can be transformed into an upper triangular
matrix by means of the following sequence of elementary row operations of

type 3:

2 0 0 1 2 0 0 1 2 0 0 1
0o 1t 3 -3 fo 1 3 -3 __fo 1 3 -3
-2 -3 -5 2 0 -3 -5 3 0 0 4 -6
4 —4 4 -6 0 -4 4 -8 0 0 16 —20
2 0 0 1
_fo 1 3 -3
0 0 4 —6
0 0 0 4

Thus det(C) =2-1-4-4=32. ¢

Using elementary row operations to evaluate the determinant of a matrix,
as illustrated in Example 6, is far more efficient than using cofactor expansion.
Consider first the evaluation of a 2 X 2 matrix. Since

det (‘j 3) = ad — be,
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the evaluation of the determinant of a 2 x 2 matrix requires 2 multiplications
(and 1 subtraction). For n > 3, evaluating the determinant of an n xn matrix
by cofactor expansion along any row expresses the determinant as a sum of n
products involving determinants of (n— 1) X (n — 1) matrices. Thus in all, the
evaluation of the determinant of an n x n matrix by cofactor expansion along
any row requires over n! multiplications, whereas evaluating the determinant
of an n x n matrix by elementary row opecrations as in Examples 5 and 6
can be shown to require only (n3 + 2n — 3)/3 multiplications. To evaluate
the determinant of a 20 x 20 matrix, which is not large by present standards,
cofactor expansion along a row requires over 20! =~ 2.4 x 10'® multiplica-
tions. Thus it would take a computer performing one billion multiplications
per second over 77 years to evaluate the determinant of a 20 X 20 matrix by
this method. By contrast, the method using elementary row operations re-
quires only 2679 multiplications for this calculation and would take the same
computer less than three-millionths of a second! It is easy to see why most
computer programs for evaluating the determinant of an arbitrary matrix do
not use cofactor expansion.

In this section, we have defined the determinant of a square matrix in
terms of cofactor expansion along the first row. We then showed that the
determinant of a square matrix can be evaluated using cofactor expansion
along any row. In addition, we showed that the determinant possesses a
number of special properties, including properties that enable us to calculate
det(B) from det(A) whenever B is a matrix obtained from A by means of an
elementary row operation. These properties enable us to evaluate determi-
nants much more efficiently. In the next section, we continue this approach
to discover additional properties of determinants.

EXERCISES

1. Label the following statements as true or false.

(a) The function det: M,xn(F) — F is a linear transformation.

(b) The determinant of a square matrix can be evaluated by cofactor
expansion along any row.

(c) If two rows of a square matrix A are identical, then det(4) = 0.

(d) If B is a matrix obtained from a square matrix A by interchanging
any two rows, then det(B) = —det(A).

(e) If B is a matrix obtained from a square matrix A by multiplying
a row of A by a scalar, then det(B) = det(A).

(f) If B is a matrix obtained from a square matrix A by adding k
times row i to row 7, then det(B) = kdet(A).

(g) If A€ Mpxn(F) has rank n, then det(A) = 0.

(h) The determinant of an upper triangular matrix equals the product
of its diagonal entries.



