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. (Applicanion to permutation theory) Consider
an arrangement of n objects, lined up in a
column. A rearrangement of the order of the
objects is called a permutation of the objects.
Every such permutation can be achieved by
successively swapping the positions of pairs

skeptical of our assertion that the solar
system would be dead long before a
present-day computer could find the
determinant of a 50 x 50 matrix using just
Definition 4.1 with expansion by minors.

a. Recall that ! = n{n — 1) - - * (3)2X1).

of the objects. For example, the first swap
might be to interchange the first object with
whatever one you want to be first in the new
arrang , and then inuing this gb.
procedure with the second, the third, etc.

However, there are many possible sequences
of swaps that will achieve a given permutation.
Use the theory of determinants to prove that
it is impossible to achieve the same
permutation using both an even number and
an odd number of swaps. [Hint: It doesn't
matter what the objects actually are—think of
them as being the rows of an n X n matrix.)

38. This exercise is for the reader who is

Show by induction that expansion of an

n % n matrix by minors requires at least
n! multiplications for n > 1.

Run the routine EBYMTIME in LINTEK
and find the time required to perform n!
multiplications for n = 8, 12, 16, 20, 25,
30, 40, 50, 70, and 100.

39. Use MATLAB or the routine MATCOMP in
LINTEK to check Example 2 and Exercises
5-10. Load the appropriate file of matrices
if it is accessible. The determinant of a
matrix A is found in MATLAB using the
command det(A).
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We have seen that computation of determinants of high order is an unreasona-
ble task if it is done directly from Definition 4.1, relying entirely on repeated
expansion by minors. In the special case where a square matrix is triangular,
Example 4 in Section 4.2 shows that the determinant is simply the product of
the diagonal entries. We know that a matrix can be reduced to row-echelon
form by means of elementary row operations, and row-echelon form for a
square matrix is always triangular. The discussion leading to Theorem 4.3 in
the previous section actually shows how the determinant of a matrix can be
computed by a row reduction to echelon form. We rephrase part of this
discussion in a “ox as an algorithm that a computer might follow to find a
determinant.

Computation of a Determinant

The determinant of an n X n matrix 4 can be computed as follows:

1. Reduce A to an echelon form, using only row addition and row
interchanges.

2. If any of the matrices appearing in the reduction contains a row of
zeros, then det(4) = 0.
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3. Otherwise,
det(4) = (—1) - (Product of pivots),

where r is the number of row interchanges performed.

When doing a computation with pencil and paper rather than with a
computer, we often use row scaling to make pivots 1, in order to ease
calculations. As you study the following example, notice how the pivots
accumulate as factors when the scalar-multiplication property of determinants
is repeatedly used.

EXAMPLE 1 Find the detzrminant oi the following matrix by reducing it to row-cchelon

form.
[2 204
3322
f‘=lo 1133
2021
SOLUTION We find that
2204 1102
3322 3322 .
013220132 Scalar-multiplication property
202 1 2021
1 1 0 2
0 0 2 -4 .
= 20 1 3 2 Row-addition property twice
0-2 2 =3
1 1 0 2
o 1 3 2 s
= —20 0 2 -4 Row-interchange property
0=2 2=3
1 1 0 2
0o 1 3 2
= =2 0 0 2 -4 Row-addition property
0 0 8 1
1 1 0 2
0o 1 3 2
=(=2p o | —p| Scalar-multiplication property
0o 0 8 1



EXAMPLE 2

SOLUTION
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1
1
0 Row-addition property
0 0

= (=202

1

1 0 2
0 j 2
0 1 -2|
0 17

Therefore, det(4) = (-2)(2)(17) = —68. =

In our written work, we usually don’t write out the shaded portion of the
computation in the preceding example.

Row reduction offers an efficienit way to program a computer to compute a
determinant. If we are using pencil and paper, a further modification is more
practical. We can use elementary row or column operations and the properties
of determinants to reduce the computation to the determinant of a matrix
having some row or column with a sole nonzero entry. A computer program
generally modifies the matrix so that the first column has a single nonzero
entry, but we can look at the matrix and choose the row or column where this
can be achieved most easily. Expanding by minors on that row or column
reduces the computation to a determinant of order one less, and we can
continue the process until we are left with the computation of a determinant of
a 2 X 2 matrix. Here is an illustratior.

5
0
4|

Find the determinant of the matrix

-1
0
1
3=

N

]
- NN
B =

It is easiest to create zeros in the second row and then expand by minors on
that row. We start by adding —2 times the third column to the first column,
and we continue in this fashion:

221 3 5 [|~4=1 3 5
2 01 0 [0 o0 1 o ([4-1 53
6 1 3 4=|0o 1 3 4=-]0 1 4
-7 3-2 8 [-3 3-2 3 -3 3 8

B F_d_l 9!_ -4 o

==/ 0 1 0——“3_4‘

-3 3 -4
= —(16 + 27) = —43. -

Cramer’s Rule

We now exhibit formulas in terms of determinants for the components in the
solution vector of a square lincar system Ax = b, where A4 is an invertible
matrix. The formulas are contained in the following theorem.
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THEOREM 4.5 Cramer's Rule

Consider the linear system Ax = b, where A = [, is an n X n

invertible matrix,
X, b,
x=['], and b=]"]
Xy le

The system has a unique solution given by

_det(BJ _
%= Ja(d) for k=1,...,n, (1)

where B, is the matrix obtained from 4 by replacing the k th-column
vector of A by the column vector b.

PROOF Because A is invertible, we know that the linear system Ax = bhasa
unique solution, and we let x be this solution. Let X, be the matrix obtained
from the n X n identity matrix by replacing its kth-column vector by the
column vector x, so that

100 % 00 0
010 % 06 0
%=1000 --- 500 --- 0|
000 «++ x,00 -+ 1]

Let us compute the product AX,. If j # k, then the jth column of AX, is the
product of 4 and the jth column of the identity matrix, which also yields the
Jjth column of A. If j = k, then the jth column of AX; is Ax = b. Thus AX; is the
matrix obtained from 4 by replacing the kth column of 4 by the column vectot
b. That is, AX, is the matrix B, described in the statement of thc theorem.
From the equation AX; = B, and the multiplicative property of determinants,
we obtain

det(4) - det(X,) = det(B,).

Computing det(X,) by expanding by minors across the kth row, “'c_”‘
that det(X,) = x,, and thus det(d) - x, = det(B,). Because A is invertible
we know that det(4) # 0 and so x, = det(B,)/det(4) as asserted in Equa
tion(1). a
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gXxAMPLE 3 Solve the linear system
Sx, =2+ x=1
Ix, + 2x, =3
x+ 5-x=0,
using Cramer’s rule.

soLuTION Using the notation in Theorem 4.5, we find that

5 -2 | 1 -2 1
det(4) =3 2 =-15, de(B)=1[3 2 0|=-5
11 -1 0 1 -1
5 i 1 5 -2 1
det(B))=13 3 0|=-15 det(B)=[3 2 3f=-20
1 0 -1 1 1 0
Hence,
o W
L R
-15
1:—_—15=l.
-20 4
= Bty Sl .

HISTOR[CaL NOTE Cmuus RULE appeared for ihe firsi time in full geperality in the
duction to the Analysis of Algeb CWS(ITSD‘;byGabneI Cramer (1704-1752). Cramer

was interested in the problem of determining the equation of a plane curve of given degree passing
through a certain number of given points. For example, the general second-degree curve, whose
equation is

A+By+Cx+Dy' + Exy + x* =0,

is determined by five points. To determine A, B, C, D, and E, given the five points, Cramer
substituted the coordinates of each of the points into the equation for the second-degree curve and
found five linear equations for the five unknown coefficients. Cramer then referred to the appendix
of the work, in which be gave his general rule: “One finds the value of each unknown by forming n
fractions of which the common denominator has as many terms as there are permutations of n
things.” He went on to explain exactly how one calculates these terms as products of certain
coefficients of the n equations, how one determines Gie agpmpnate sign for each term, and how

one d ines the n of the fractions by rep g certain coeffici in this
calculation by the constant terms of the system.
Cramer did not, however, explain why his calculations work. An explanation of the rule for

the cases n = 2 znd n = 3 did appear, however, in A Treatise of Algebra by Colin Maclaurin
{1698-1746). This work was probably written in the 1730s, but was not published until 1748, after
his demh In it Maclaunn derived Cramer’s rule for the two-variable case by going I.hrony'n the

1 elimi dure. He then derived the three-variable version by solving two pairs of
equations for one unltnm and equating the results, thus reducing the problem 1o the
wo-variable case. Maclaurin then described the result for the four-variable case, but said nothing
about any further generalization. | ingly, Leonhard Euler, in his Iniroduction of Algebra of
1767, does not mention Cramer’s rule at all in his section on solving systems of linear equation:.
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The most efficient way we have presented for computing a determinant is
to row-reduce a matrix to triangular form. This is also the way we solve a
square linear system. If 4 isa 10 x 10 invertible matrix, solving Ax = b using
Cramer’s rule involves row-reducing eleven 10 % 10 matrices 4, B,, B,, . . .,
B, to triangular form. Solving the linear system by the method of Section 1.4
requires row-reducing just onc 10 x !l matrix so that the first ten columns are
in upper-triangular form. This illusirates the folly of using Cramer’s rule to
solve linear systems. However, the structure of the components of the solution
vector, as given by the Cramer’s rule formula x, = det(B,)/det(A), is of interest
in the study of advanced calculus, for example.

The Adjoint Matrix

We conclude this section by finding a formula in terms of determinants for the
inverse of an invertible n X n matrix 4 = [g;]. Pecall the definition of the
cofactor aj; from Eq. (2) of Section 4.2. Let 4, be the matrix obtained from 4
by replacing the jth row of 4 by the ith row. That is,

ay ap " 4y,
a, a; *++ a,| ithrow

a;, a; " a,| jthrow

L

Then

_ [det{d) ifi=j
det4,.) = {o ifi %]

If we expand det(4,,) by minors on the jth row, we have
det(4,,) = i a.a;,
=1
and we obtain the important relation
o, [det(d) ifi=j,
,;, i [0 ifi#]. L

The term on the left-hand side in Eq. (2) is the entry in the ith row and b
column in the product A(4')7, where A’ = [a}] is the matrix whose entries ar¢
the cofactors of the entries of A. Thus Eq. (2) can be written in matrix form 3§

A(A')" = (det(4))],
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where I'is the n % n identity matrix. Similarly, replacing the ith column of 4 by
the jth column and by expanding on the ith column, we have

. _ [det(d) ifi=j
3 da, - {0 ifi#] Lo

r=1

Relation (3) yields (4')7A = (det(A))[.
‘The matrix (4')" is called the adjoint of 4 and is denoted by adj(4). We
have established an important relationship between a matrix and its adjoint.

THEOREM 4.6 Property of the Adjoint
Let 4 be an n X n matrix. The adjoint adj(4) = (4) of A satisfies

(adj(A))4 = A(adj(4)) = (det(4)),

where I is the n X a identity matrix.

Theorem 4.6 provides a formula for the inverse of an invertible matrix,
which we present as a corollary.

COROLLARY A Formula for the Inverse of an Invertible Matrix

Let A = [a,] be an n X n matrix with det(4) # 0. Then 4 is invertible,
and

A= H‘maajw,

where adj(4) = [ay]" is the transposed matrix of cofactors.

i

if the matrix is invertible, using the corollary of Theorem 4.6.

EXAMPLE 4 Find the inverse of

[Py
=]

SOLUTION We find that det(d) = 4, so 4 is invertible. The cofactors aj are
; 20 i 20
an=("|)l|] i =2, a:l‘(")’l} 1 =il

0

=2 .
aj; = (-1)! 31 =-4, ay = (-1 1

|
="

e L o0 | ol O] _
=3 i[=1 w= il
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: 01 3 ;4 1
a= 0y o =2 a=fs gl =2

: 40
a= -1y 5| =

Hence,

(=]

2 -2 -4 2 1 =2
A=[al=[ 1 1 -4, so adid)=[-2 1 2
2 8] -4 -4 8

and

1

" J2 1=af | &

V= ——— adj ==|- 2= 7
A FetA) adj(A4) 3 2 0 2 Iz

—_ Al -

-4 -4 8

The methed described in Section 1.5 for finding the inverse of an

invertible matrix is more efficient thas the method illustrated in the preceding
example, especially if the matrix is large. The corollary is often used to find ihe
mverse of a 2 x 2 matrix. We see that if ad — bc # 0, then

Bl 1 fd=
‘_cd T ad-be|l-c af

| sSUMMARY

1.

A computationally feasible algerithm for finding the determinant of a
matrix is to reduce the matrix to echelon form, using just row-addition and
row-interchange operations. if a row of zeros is formed during the process,
the determinant is zero. Otherwise, the determinant of the original matrix
is found by computing (=1) - (Product of pivots) in the echelon form,
where r is the number of row interchanges performed. This is one way to
program a computer to find a determinant.
The determinant of a matrix can be found by row or column reduction of
the matrix to a matrix having a sole nonzero entry in some column or row.
One then expands by minors on that column or row, and continues this
process. If a matrix having a zero row or column is encountered, th_e
determinant is zero. Otherwise, one continues until the computation 15
reduced to the determinant of a 2 X 2 matrix. This is a good way to find3
determinant when working with pencil and paper.
If A is invertible, the linear system Ax = b has the unique solution x whosé
kth component is given explicitly by the formula

- det(Bg}‘

L det(d)

thcre the matrix B, is obtained from matrix 4 by replacing the k th colum?
of A by b.
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4. The methods of Chapter 1 are far more efficient than those described in

[

6.

this section for actual computation of both the inverse of 4 and the
solution of the system Ax = b.

Let A4 be an n X n matrix, and let A’ be its matrix of cofactors. The adjoint
adj(A) is the matrix (4')" and satisfies (adj(A)A = A(adj(4)) = (det(A))/,
where I is the n x n identity matrix.

The inverse of an invertible matrix 4 is given by the explicit formula

1

Al = dﬂ-_(o’ﬂadj{{ﬂ

EXERCISES

In Exercises 1-10, find the determinant of the

given maltrix.

2 3=1
.| 5-7 1
=3 Y=

5
2 -
3
1

0
2
7
1

O = b

2
-3
-4
=1

[3-5-1 17
0 3 1 -6
2-5-1 8
-8 8 2 -9
P 1 0 0
-1 2 0
510 4 1 -1
0 0-3 2
0 0 0 -1
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11. The matrices in Exercises 8 and 9 have zero
entries except for entries in anr X r
submatrix R and a separate ¢ X 5 submatrix
& whose main diagonals lie o the main
diagonal of the whole n x n matrix, and
where r + 5 = n. Prove that, if 4 is such a
matrix with submatrices R and S, then
det(4) = det(R) - det(S).

12. The matrix 4 in Exercise 10 has a structure
similar to that discussed in Exercise 11,
except that the square submatrices R and §
lie along the other diagonal. State and prove
a result similar to that in Exercise 11 for
such a matrix.

. State and prove a generalization of the result
in Exercise 11, when the matrix A has zero
entries except for entries in k submatrices
positioned along the diagonal.

In Exercises 14-19, use the corollary to Theorem
4.6 to find A" if A is invertible.

[z 0 41
14 A= A=
[1 —1] LA [2 1]



272 CHAPTER 4 DETERMINANTS

2 1. 7 [ 4
16. A= 0 1 | 17. A=|~-
=2 1 Gl 2

[P
—_—

30 3
18. A=| 4 | =2 19. 4 =
-5 1 4

ol = ]

B oo
— b

20. Find the adjoint of the matrix

[P

,_,_
- Y
—

21. Find the adjoint of the matrix

S s b
ettt
- 5o

cd
find the matrix A.
. If 4 is a matrix with integer entries and if
det(4) = =1, prove that 47" also has the
same properties.

22. Given that 4™ = [“ b] and det(d™') = 3,

(=]
it

In Exercises 24-11, solve the given system of
linear equations by Cramer's rule wherever il is

possible.
MH x-2n=1 5. - in= 1
Ix, +4x,=13 —dx, + bxy = -2

26. 3x, +x;=5 .4+ =1

I +x,=0 X+g=2
28 5x, -2x, + x;=1
n+x=0

x+b6x,-x=4
Y x;+2np- x3=-2
I+ u+ = 0
e, - x;+5n= 1
0. x- x;+ ;=0
xn+dx,- x=1
X = X +2=0
3 3+ 2x;, - xy 1
X —dx; +x;,==2
5x, + 2x, = 1

n

in Exercises 32 and 33, find the component
x, of the solution vector for the given linear
system.

RN on+x-3Igt =1

25+ x +2x,=0
xn=6x;— x,=5

In +x + x.=1
B o+ Hp—x = 4
X=X +-5%y =—2
-x + 3+ x = 2

N+ X3=x+2dx,=

34. Find the unique solution (assuming that it
exists) of the system of equations
represented by the partitioned matrix

a, b ¢ a | 3
a b, ¢, d, | 3b,
ay by, ¢, dy | 3b|
a, b ¢, 4, | 3b,

35. Let A be a square matrix. Mark each of the

following True or False.

— a. The determinant of a square matrix is th
product of the entries on its main
diagonal.

_b. The determinant of an upper-trianguiar
square matrix is the product of the
entries on its main diagonal.

— ¢. The determinant of a lower-triangular
square matrix is the product of the
entries on its main diagonal.

___d. A square matrix is nonsingular if and

only if its determinant is positive.

e. The column vectors of an n X n matrix
are independent if and only if the
determinant of the matrix is
nonzero.

___ f. A homogeneous square linear system has
a nontrivial solution if and only if the
determinant of its coefficient matrix is
zero.

___ g The product of a square matrix and its
adjoint is the identity matrix.

— h. The product of a square matrix and its
adjoint is equal to some scalar times the
identity matrix.

___ i. The transpose of the adjoint of A is the
matrix of cofactors of A.

___ j. The formula A™' = (1/det(4))adj(4) is of
practical use in computing the inverse
a large nonsingular matrix.
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3. Prove that the inverse of a nonsingular
upper-triangular matrix is upper triangular.

37. Prove that a square matrix is invertible if
and only if its adjoint is an invertible
matrix.

38, Let 4 be an n X n matrix. Prove that
det(adj(4)) = det{A)"".

39. Let A be an invertible n % n matrix with
n > |. Using Exercises 37 and 38, prove that
adj(adj(4)) = (detiA)~ 4.

B 7he routine YUREDUCE in LINTEK has a
menu option D that will compute and display
the product of the diagonal elements of a
square matrix. The routine MATCOMF has a
menu eption D to compule a determinant.
Use YUREDUCE or MATLAB to compute
the determinant of the matrices in Exercises
40-42. Write down your results. If you used
YUREDUCE, use MATCOMP to compute
the determinants of the same matrices again
and compare the answers.

1 -% 28 13 -15 33
40. |32 -24 21 41, |[-15 25 40
10 13 =19 12 =33 27

76 28 -39 193 250
=332 114 132 224 183
42. | 214 -32.1 457 -89 125
174  11.0 -6.8 203 -35.1
227 119 332 25 138
43. MATCOMP computes determinants in
essentially the way described in this section.

The matrix
34
A=
23

has determinant 1, so every power of it
should have determinant i. Use MATCOMF
with single-precision printing and with the

acfault roundoff control ratio r. Start
computing determinants of powers of A.
Find the smallest positive integer m such
that det(47) # |, according 10 MATCOMP.
How bad is the error? What does
MATCOMP give for det(4™)? At what
integer exponent does the break occur
between the incorrect value 0 and incorrect
values of large magnitude?

Repeat the above, taking zero for
roundoff control ratio r. Try to explain why
the results are different and what is
happening in each case.

. Using MATLAB, find the smallest positivc

integer m such that det(4™) # 1, according
to MATLARB, for the matrix 4 in Exercise
43

In Exercises 45-47, use MATCOMP in LINTEK
or MATLAB and the corollary of Theorem 4.6 1o
find the matrix of cofactors of the given matrix.

45,

47.

1 2 -3

2 3 0

13 1 4

[-52 31 4?‘]
21 =11 28

L 43 -71 STJ

[ 6 -3 2 14
-3 1 8 1
4 9-5 3

-8 —40 47 29

[Hint: Entries in the matrix of cofactors are
integers. The cofactors of a matrix are
continuous functions of its entries; that is,
changing an entry by a very <light amount
will change a cofactor only slightly. Change
some eatry just a bit to make the
determinant nonzero.)

(OPTIONAL)

4.4 LINEAR TRANSFORMATIONS AND CETERMINANTS

We continue our program of exhibiting the relationship between matrices and
linear transformations. Associated with an m % n matrix A is the linear
transformation 7 mapping " into R, where T{x) = Ax forxinR". Ifn = m, so



