Computing characteristic polynomials.

The characteristic polynomial of a matrix is defined to be the determinant of a matrix with
polynomial entries, each of which is zero or has degree < 1; as such the charactristic polynomial is a
sum of monomials, each of wich is a product of scalars and first degree polynomials. As in the case
of matrices with scalar entries, computation of such determinants by the explicit formula quickly
becomes unmanageable, and therefore one needs some alternate means for computing such expres-
sions. One such method is outlined below. It requires something like n* arithmetic computations;
in contrast, computing a determinant with scalar entries from the explicit formula requires about
n!+ (n + 1)! arithmetic computations, and for matrices with polynomial coefficients the required
number of computations is even larger.

This method is based upon some results concerning polynomials that are symmetric in h
variables; i.e., we have
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for all permutations o of {1, --- , n}. The results provide formulas for computing the coeeficients
of the characteristic polynomial x 4(¢) of a matrix A in terms of the traces of the power matrices
AF. and it is easy to write down compuer programs which use these formulas to compute the
coefficients of x4 (t) for matrices that are too large to permit efficient calculation of characteristic
polynomials using elementary techniques, including expansion by minors.

Newton’s Formula

If £ < n then the polynomial in n variables given by
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is symmetric and therefore can be expressed as a polynomial in the elementary symmetric functions
o; that are the given by the identity
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This polynomial is called the k*® Newton polynomial and is generally denoted by sy (o1, --- ,05).
One can compute this polynomial recursively using the following result:
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Sketch of proof. Make the substitution s = —¢; in the defining identity for the symmetric
functions and sum from ¢ = 1 to n.m=

Applications to characteristic polynomials

Suppose that A is a triangular matrix. Then its characteristic polynomial is equal to the
product
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and using the elementary symmetric polynomials o; we may rewrite this as
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Furthermore, if A is a triangluar matrix we also know that
sp(o1, =+ ,on) = Ngla11, ...,any,) = trace Ak

We may now use Newton’s Formula to find o recursively using the identity
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Using the formula for s; given above, we may write everything in the form
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where we have by = (—1)" and
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THEOREM. The same formula is valid for arbitrary matrices.

Proof. If C is an arbitrary matrix over the complex numbers, then C' is similar to some triangular
matrix A. Since similar matrices have the same characteristic polynomial, we know that
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where by, is given as above. Therefore it suffices to verify that thr traces of the m'® power matrices
A™ and B™ satisfy trace(C™) = trace(A™) for all m. But this is true because if A is similar to C
then A™ is similar to C"™ for all m and similar matrices always have equal traces.s

This leads to a straightforward algorithm. Start off with by = (—1)" and trace(A") = n,
assume that after Step k& we know by through by, the matrices A° through A* and the traces of A°
through A*. At Step k + 1 one first computes A*+1, then computes its trace, and finally computes
br+1 using the recursive formula.m



