Expansions by minors: Applications

The purpose here is to establish a few basic applications for expansions of determinants by minors. This material is not in Axler's book, but most of it is discussed more thoroughly in the file week10/minors+cramer.pdf, so most of the detailed derivations will be omitted.

We start by recalling the formula for expansion by minors along the $i^{\text {th }}$ row of a matrix $A=\left(a_{i, j}\right):$

If $A_{i, j}$ is the matrix formed by deleting row i and column j from A, then

$$
\operatorname{det} A=\sum_{j}(-1)^{i+j} a_{i, j} \operatorname{det} A_{i, j}
$$

If we now define the classical adjoint adj A (which is NOT the adjoint that was studied previously) to be the matrix whose i, j entry is $(-1)^{i+j} \operatorname{det} A_{j, i}$ (note the transposition of indices!), then the expansion by minors formula yields the following crucial identity:

$$
A \cdot \operatorname{adj} A=\operatorname{adj} A \cdot A=\operatorname{det} A \cdot I
$$

In particular, if A is an invertible matrix this yields the following formula for finding the inverse matrix:

$$
A^{-1}=(\operatorname{det} A)^{-1} \cdot \operatorname{adj} A
$$

And the latter yields a result generalizing the use of determinants for solving systems 2 or 3 linear equations in 2 or 3 unknowns from high school algebra.

THEOREM (Cramer's Rule; the name is pronounced kra-MARE). Let A be an $n \times n$ matrix, and let B be an $n \times 1$ matrix. If A is invertible (so that $\operatorname{det} A \neq 0$), then the unique solution to the matrix equation $A X=B$ is given by the formulas

$$
x_{i}=\frac{\operatorname{det} B[i]}{\operatorname{det} A}
$$

where $B[i]$ is obtained from A by replacing the $i^{\text {th }}$ column of A with B.■
Since it is much easier to find A^{-1} using row operations instead of determinants, the significance of Cramer's Rule and the identity for A^{-1} usually is more qualitative than computational. Here is an example to illustrate this principle:

THEOREM. Let A be an invertible matrix such that each entry is an integer. Then A^{-1} is rational, and it is integral if and only if $\operatorname{det} A= \pm 1$.
Proof. Since we know the entries of A are integers, the explicit formula for determinants shows that the entries of adj A are also integers, and also that $\operatorname{det} A$ is an integer. Therefore the determinant formula for A^{-1} implies that the latter's entries are all rational numbers. Furthermore, if $\operatorname{det} A= \pm 1$ then the entries of A^{-1} are integers.

Conversely, if A^{-1} has integer entries, then we also know that $\operatorname{det} A^{-1}$ is also an integer and therefore we have

$$
1=\operatorname{det} I=\operatorname{det} A \cdot \operatorname{det} A^{-1}
$$

where all terms in the display are integers. Since the product of two integers is 1 if and only if both are equal to ± 1, it follows that $\operatorname{det} A= \pm 1$

