
V.3 : Classification of critical points

(Fraleigh and Beauregard, §8.3)

This section deals with multivariable versions of the second derivative test for relatve maximum
and minimium values of a function that has continuous second partial derivatives. In single variable
calculus, the second derivative test for such values has two basic steps:

(1) Find the points x for which the derivatitive f ′(x) of the function f is equal to zero (or is
undefined).

(2) For each x such that f ′(x) = 0, find the second derivative f ′′(x). If it is positive, then f
has a relative minimum at x , but if it is negative then f has a relative maximum at x. If
f ′′(x) = 0, then the test yields no information on whether there is a realtive maximum,
relative minimum, or neither.

Generalzations of this result to functions of two, and sometimes even three, variables, are often
found in the sections of calculus texts that discuss partial differentiation. but generally the jus-
tification for these tests is not presented because it involves and understanding of the following
question about matrices:

POSITIVITY QUESTION. Let A be a real symmetric matrix, and let qA be the quadratic form
defined by qA(x) = TxAx. Under what conditions on A can we conclude that qA(x) is positive for
every nonzero vector x?

A symmetric matrix satisfying the condition in the preceding question is said to be positive
definite. The main algebraic result of this section gives an answer to this question in relatively
simple terms. We shall state the main result now and prove it after comploeting the discussion of
the second derivative test for functions of several variables.

PRINCIPAL MINORS THEOREM. Suppose that A is an n× n symmetric matrix over the
real numbers, and for each integer k between 1 and n let A(k) be the k×k matrix whose (i, j) entry
is ai,j for 1 ≤ i, j ≤ k (visually, this is the k×k submatrix in the upper left hand part of the original
array with all other entries discarded). Then A is positive definite if and only if det A(k) is positive
for all k between 1 and n.

In older terminology for matrix algebra, the quantity det A(k) was called the kth principal
minor of A (minors referred to determinants of matrices formed by deleting suitable numbers of
rows and columns), and this is the reason behind the naming of the result. When we return to the
derivation of the Principal Minors Theorem we shall also show that it is much easier to check its
validity for examples than one might initially think.

Taylor’s Theorem in several variables

Recall that Taylor’s Theorem — or Taylor’s Formula — is a result on approximating functions
with (n+1) continuous derivatives by polynomials of degree ≤ n and that it includes a formula for
the error in the given “optimal” approximations. Usually this is expressed in terms of the (n + 1)st

derivative of the function, but for some purposes other descriptions of the error term are also worth
knowing. Nearly every calculus text includes a treatment of Taylor’s Theorem and at least one
version of the error term. For our purposes it will suffice to use the version stated as Theorem 8.19
on page 611 of Calculus (Seventh Edition), by Larson, Hostetler and Edwards.
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TAYLOR’S THEOREM WITH THE LAGRANGE REMAINDER. Suppose that f is a
real valued function defined on an interval (c − r, c + r) where c ∈ R and r > 0, and suppose that
f has continuous derivatives of all orders through (n + 1) on that interval, where n ≥ 1. Then for
each h �= c such that |h| < r there is a point α between c and c + h such that

f(x + h) = f(c) +

n∑

k=1

f (k)(c)

k!
hk + Rn(h)

where

Rn(h) =
f (n+1)(α)

(n + 1)!
hn + 1 .

We shall need a version of this result for functions of m variables. The first step in formulating
this generalization is to specify where f is defined, and we replace the interval of radius r centered
at c ∈ R with the open disk of radius r about a point c ∈ Rn:

Nr(c) = { x ∈ Rm | |x− c| < r }

Given that we are starting with the single variables form of Taylor’s Theorem, it should not be
surprising that we want to derive the multivariable form by constructing some single variable
function out of the given multivariable function. If we let h �= 0 such that |h| < r, then the
function

g(t) = f(c + th)

will be a function defined on an open interval of radius

r

|h| > 1 .

In order to show that this function has the required differentiability properties, one assumes that
f has continuous partial derivatives with respect to all combinations of variables through order
(n + 1); the differentiability properties of g then can be obtained by repeated application of the
Chain Rule from multivariable calculus (see Section 12.5 on pages 876–883 of the text by Larson,
Hostetler and Edwards).

Strictly speaking, the statements of the Chain Rule in calculus textbooks often only give a
formula such as

dw

d s
=

n∑

j=1

∂ w

∂ uj

duj

d s

(this is essentially the formula at the top of page 877 of Larson, Hostetler and Edwards), but in our
case it is easy to check that this expression has continuous derivatives of order k for each k ≤ n by
induction. Specifically, if h is expressed in coordinates as (h1, · · · , hn), then we have the following
explicit formula:

g(k)(t) =
∑

1≤i1,···, ik≤m

∂ k f

∂xi1 · · · ∂xik

(
c + th

) · hi1 · · · hik

We can now state a multivariable version of Taylor’s Theorem that is sufficient for our purposes.
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MULTIVARIABLE TAYLOR’S FORMULA FOR DEGREE 1 APPROXIMATIONS.
Let f be a function of m variables with continuous second partial derivatives with respect to all
pairs of variables on the open disk Nr(c), and let h �= 0 be such that |h| < r. Then there is some
α ∈ [0, 1] such that

f(c + h) = f(c) +
m∑

k=1

∂f

∂xk

(c)hk +
∑

1≤i,j≤m

∂ 2 f

∂xi ∂xj

(
c + αh

) · hi hj .

We shall describe a more concise way of writing the right hand side. One can use gradients to
write the linear part of the function as f(c) +∇f(c) · h, and if one defines the Hessian of f at a
point p to be the symmetric m×m matrix Hess(f ;p) whose (i, j) entry is equal to

∂ 2 f

∂xi ∂xj

(p)

then we can rewrite the relevant case of Taylor’s Formula as follows:

f(c + h) = f(c) + ∇f(c) · h + Th
[
Hess(f ; c + αh)

]
h

With this terminology we are finally ready to write down the second derivative test for relative
extrema in several variables:

MULTIVARIABLE SECOND DERIVATIVE TEST. Let f be a function with continuous
second partial derivatives on the open disk Nr(c) in Rn, and suppose that ∇f(c) = 0. Then the
following conclusions hold:

(1) If the Hessian of f at c is a positive definite matrix, then f has a relative minimum
at c.

(2) If the negative of the Hessian of f at c is a positive definite matrix, then f has a relative
maximum at c.

(3) If the Hessian of f at c is invertible, but neither it nor its negative is positive definite, then
f has neither a relative maximum nor a relative minimum at c (these are essentially the saddle
points one discusses in multivariable calculus).

(4) If the Hessian of f at c is not invertible, then no conclusion can be drawn.

The standard test the positive definiteness of the Hessian is given by the Principal Minors
Theorem, and in fact this test plays an important part in the derivation of the Multivariable
Second Derivative Test. Therefore we shall restate the latter using the Principal Minors Theorem:

ALTERNATE FORMULATION. In the setting above, one can restate the conclusions as
follows:

(1) If the the principal minors for the Hessian of f at c are all positive, then f has a relative
minimum at c.

(2) If the odd principal minors for the Hessian of f at c are all negative and the even
principal minors for the Hessian of f at c are all positive, then f has a relative maximum at c.

(3) If the Hessian of f at c has a nonzero determinant but the principal minors do not satisfy
either of the sequences of positivity and negativity conditions described above, then f has neither
a relative maximum nor a relative minimum at c (this is the saddle point case).
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(4) If the determinant of the Hessian of f at c is zero, then no conclusion can be drawn.

Since no information is obtained if the determinant of the Hessian vanishes, we shall ignore
this case henceforth and assume that the Hessian at c has a nonzero determinant. The proof of the
second derivative test then splits into three cases; namely, the tests for relative minima, relative
maxima and saddle points.

Relative minimum test. Since the gradient vanishes at c, the concise formulation of
Taylor’s Theorem yields the following identity, in which α ∈ [0, 1]:

f(c + h) − f(c) = Th
[
Hess(f ; c + αh)

]
h

Suppose that the Hessian of f and c is positive definite, so that all of its principal minors are
positive. We need to show that the positivity of these principal minors for Hess(f ; c) implies a
corresponding statement for Hess(f ; c+ αh), at least if |h| is sufficiently small. Specifically, here is
what we need:

Lemma. If the principal minors of Hess(f ; c) are all positive then there is a number s ∈ (0, r)
such that |v| < s implies that the principal minors of Hess(f ; c + v) are also all positive.

Proof of Lemma. Since the determinant is a polynomial in the entries of a matrix, it is a
continuous function of the entries of a matrix. In particular, if the principal minors of a square
matrix A are all positive and the entries of a second matrix B are all sufficiently close to those of
A, then the principal minors of B will also be all positive. Take A to be the Hessian at c and B to
be the Hessian at some other point c + v. Since f has continuous second partial derivatives there
is an s > 0 such that |v| < s implies the entries of B are sufficiently close to the entries of A for
the principal minors condition to hold.

Return to the relative minimum test. If we now restrict ourselves to vectors h of length
≤ s, then the Lemma tells us that the principal minors for Hess(f ; c + αh) will all be positive, and
hence that

Th
[
Hess(f ; c + αh)

]
h > 0 .

It follows that f has a strict relative minimum at c.

Relative maximum test. This will be derived directly from the preceding test, using the
fact that the relative maxima of f are the same as the relative minima of its negative function −f .
Since the Hessians of f and −f are negatives of each other, the relative minimum test immediately
implies that one has a strict relative maximum if the principal minors of the matrix −Hess(f ; c) are
all positive. Since the determinants of k × k matrices satisfy the relation det(−B) = (−1)k detB,
it follows that the kth principal minor of the matrix

Hess(−f ; c) = −Hess(f ; c)

is equal to the corresponding principal minor for Hess(f ; c) if k is even and the negative of the
corresponding principal minor if k is odd. Therefore the conditions for f to have a strict relative
maximum, or equivalently for −f to have a strict relative minimum, translate into the negativity
of the odd principal minors of the Hessian and the positivity of the even principal minors of the
Hessian.

Saddle point test. Before reading this it might be useful to say a few words about saddle
points. The typical example for functions of two variables is given by f(x, y) = y2 − x2, and it is
illustrated on page 908 of Larson, Hostetler and Edwards. If we restrict the function to points of
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the form (0, y) then this restricted function has an absolute minimum at (0, 0), while if we restrict
to points of the form (x, 0) then the restricted function has an abolute minimum there. This
topic is also discussed on pages 193–194 of Basic Multivariable Calculus, by Marsden, Tromba and
Weinstein.

Once again we need some additional input.

Lemma. If A is a symmetric matrix over the real numbers, then A is positive definite if and only
if all of its eigenvalues are positive.

Proof of Lemma. By Rayleigh’s Principle the minimum value of the Rayleigh quotient is the
minimum eigenvalue, and by the definition of this quotient it is positive for all nonzero vectors in
Rn if and only if qA is positive for all such vectors. But the latter is precisely the condition for a
real symmetric matrix A to be positive definite. Since all the eigenvalues of A are positive if and
only if the smallest eigenvalue is positive, this proves the Lemma.

Return to the saddle point test. In this case we are assuming that the Hessian at
c is invertible, so that its eigenvalues are all nonzero, but by the Lemma we are also assuming
conditions which mean that its eigenvalues are neither all positive nor all negative. It follows that
the maximum eigenvalue must be positive and the minimum eigenvalue must be negative. Let λ±
be the maximum and minimum eigenvalues, and let u± be unit eigenvectors for these eigenvalues.
If h± is a nonzero multiple of u± it follows that

Th±
[
Hess(f ; c)

]
h± = |h±|2 λ±

and therefore the expression is positive for h+ and negative for h−. By the continuity of the entries
in the Hessian matrix, we can find some s ∈ (0, r) such that if |v| < s then

Tu+

[
Hess(f ; c + v)

]
u+ > 0

and also
Tu−

[
Hess(f ; c + v)

]
u− < 0 .

Suppose now that we choose h± to have length less than s. As in the previous tests we know that

f(c + h±) − f(c) = Th±
[
Hess(f ; c + αh)

]
h±

and we may rewrite the right hand side in the following form:

|h±|2 · Tu±
[
Hess(f ; c + αh±)

]
u±

Now the first factor is always positive, and the conditions on the vectors h± ensure that the
remaining factor is positive for h+ and negative for h−. Therefore f(c + h+) − f(c) is positive
and f(c + h−) − f(c) is negative, since we can choose the lengths of h± to be arbitrarily small
positive numbers, it follows that f neither has a relative maximimum nor a relative minimum at
c.

Proof of the Principal Minors Theorem

The following general result on the structure of positive definite matrices will be important for
our purposes.
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THEOREM. If A is a symmetric n× n matrix, then the following conditions are equivalent:

(1) The matrix A is positive definite.

(2) The function ϕA(x, y) = TyAx defines an inner product on Rn.

(3) The matrix A can be written as a product TP P for some invertible matrix P .

Proof. [ (1) =⇒ (2) ] The basic conditions for an inner product, for example as stated in
Theorem 1.3 on pages 24–25 of the text, are consequences of the rules for matrix multiplication
and the assumption that TxAx is positive if x �= 0.

[ (2) =⇒ (3) ] The Gram-Schmidt Process shows that there is a basis for Rn that is
orthonormal with respect to ϕA. If we let Q be the matrix whose columns are this orthonormal
basis, then direct calculation shows that the ϕA innner product of the ith and jth columns of Q is
equal to the (i, j) entry of TQAQ, and therefore we know that the latter matrix is the identity. If
we let P = Q−1, then it follows that A = TP P .

[ (3) =⇒ (1) ] If x is nonzero then so is P (x), and therefore we have

TxAx = TxTP P x = |P (x)|2 > 0 .

Application to the Principal Minors Theorem. We can use the preceding result to prove that
the principal minors of a positive definite matrix are all positive as follows. If A(k) is the k × k
submatrix in the upper left hand corner of A, then by the theorem we know there is an invertible
matrix Pk such that A(k) = TPk Pk. Since the determinant of a matrix and its transpose are equal,
it follows that

detA(k) = det
(
TPk Pk

)
= det

(
TPk

)
det Pk =

(
detPk

)2
> 0 .

The proof of the reverse implication proceeds by induction on the size of the matrix, and it
will be convenient to isolate the crucial part of the inductive step.

Lemma. Let A be a symmetric n×n matrix such that the (n−1)×(n−1) matrix in the upper left
hand corner is an identity matrix and the determinant of A is positive. Then A is positive definite.

Proof. Let d = an,n, and let wi = ai,n = an,i for i < n. We can reduce A to triangular form
by subtracting wi times the ith row from the last row for each i < n, and if we do so we obtain a
matrix whose diagonal entries are equal to 1 except in the final position, where one has d =

∑
i w2

i .
It follows that the latter must be positive because it is equal to the determinant of A.

For every n× 1 column vector x with entries xi we have

TxAx =
n−1∑

i=1

x2
i +

n−1∑

i=1

2wi xi xn + dx2
n

and by completing squares and using the previous formula for det A we may rewrite the right hand
side as

n−1∑

i=1

(xi + 2wi xn)2 + (det A)x2
n .

If this expression is zero, then the positivity of the determinant implies that xn = 0, and since we
also have 0 = xi + wi xn in this case it follows that 0 = xi + wi xn = xi for all i < n.
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Completion of the proof of the Principal Minors Theorem. If A is a 1 × 1 matrix
there is not much to prove because the quadratic form reduces to an second degree polynomial
ax2, and the latter is positive for all nonzero x if and only if a > 0. Suppose now that the result
is known for (n − 1)× (n− 1) matrices, and let A0 denote the (n − 1)× (n − 1) submatrix in the
upper left hand corner of A. By induction we know that A0 is positive definite, and therefore we
may write A0 = TP0 P0 for some invertible matrix P0. Let Q0 be the inverse to P0, and let Q
be the block sum of Q0 with a 1 × 1 identity matrix. Direct calculation then shows that TQAQ
is a matrix which satisfies the conditions of the previous lemma (for example, its determinant is
positive because it is equal to det A · (det Q)2). It follows that TQAQ can be factored as a product
TS S for some invertible matrix S, and therefore if we set B equal to S Q−1 it will follow that B is
invertible and A = TB B.

Computational Procedure. Finally, here is a simple algorithmic process for determining
whether the principal minors of an arbitrary square matrix are all positive:

For each i such that 1 ≤ i ≤ n attempt to carry out the following steps on a previously
computed matrix Ai−1; we take A0 = A, and part of the recursive assumption is that the (k, j)
entries of Ai−1 are zero if k ≤ i− 1 and j > k. First check whether the (i, i) entry Pi of the matrix
is positive. If not, stop the process and conclude that the matrix is does not have a positive ith

principal minor and therefore is not positive definite. If the entry is positive, then conclude that the
ith principal minor is positive. There are now two cases depending upon whether i < n or i = n.
In the second case, the procedure is finished, but in the first case one next performs row operations
to subtract multiples of the ith row from each subsequent row so that the resulting matrix Ai has
all zero entries in the ith column below the ith row; by the recursive assumption this matrix will
also have zero entries in the places where Ai−1 was assumed to have zero entries. Furthermore, the
first i diagonal entries of Ai will be the same as the first (i− 1) diagonal entries of Ai−1, and since
the process has continued all these diagonal entries must be positive. The principal minors of the
original matrix will be positive if and only if they are so determined by this process.

JUSTIFICATION. If i = 1 this process determines whether the first principal minor is positive
and terminates if this is not the case. Suppose that the procedure is known to determine whether
the first (i− 1) principal minors are positive and continues until reaching the ith step. Note that
these operations do not change the principal minors of the matrix. The determinant
of Ai−1 will be equal to the corresponding principal minor of A, so that one is positive if and
only if the other is. Since the (i − 1) × (i − 1) matrix in the upper left corner of Ai−1 is upper
triangular it follows that its diagonal entries are the positive numbers Pk for k < i, and therefore
the corresponding principal minor of A is positive. In fact, we also know that the i× i submatrix
in the upper left hand corner of Ai−1 is also upper triangular, and its determinant is the product
of the previously computed principal minor with Pi. It follows that the ith principal minor of A is
positive if and only if Pi > 0. Assuming that it is and that i < n, the process for finding the next
matrix Ai does not change the i × i submatrix in the upper left hand corner (hence the principal
minor), nor does it change any columns before the ith one. However, in the new matrix all entries
in the ith column below the ith row are zero.
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