UPDATED GENERAL INFORMATION - OCTOBER 31, 2018

Here are solutions to the exercises in aabUpdate06f18.pdf.

1. Given $\angle a b c$ and a line L in the same plane, if these two sets meet in three points then either $L=a b$ or $L=a c$.

SOLUTION. Let x, y, z be the three points. Each of these points lies on either $a b$ or $a c$, and it follows that at least two of these points lie on one of these lines (this is known as the pigeonhole principle). If two or three points lie on $a b$ then $L=a b$ because there is a unique line containing two points. Similarly, if two or three points lie on $a c$ then $L=a c . \square$
2. Verify the statement about ruler functions made in the lectures: If L is a line and $h: L \rightarrow \mathbb{R}$ is a ruler function, and $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $g(t)=\varepsilon t+K$ where K is an arbitrary constant and $\varepsilon= \pm 1$, then the composite $g^{\circ} f$ is also a ruler function. - For the sake of completeness, we say that f is a ruler function if it is a $1-1$ correspondence from L to \mathbb{R} under which the distances between two points on L equals the distance between the corresponding real numbers (see the first page of Section II.3).

SOLUTION. First of all, f is a misprint and should be replaced by h. - The map $g{ }^{\circ} h$ is a $1-1$ correspondence, for an inverse function to g is given by $g^{-1} u=\varepsilon(u-K)$., and therefore the composite of the two $1-1$ onto maps h and g has an inverse.

We need to show that $g^{\circ} h$ is distance preserving, and we do this by writing everything out:

$$
\begin{aligned}
|g h(x)-g h(y)|=|(\varepsilon h(x)+K)-(\varepsilon h(y)+K)| & =|\varepsilon h(x)-\varepsilon h(y)|=\mid \varepsilon(h(x)-h(y) \mid= \\
|\varepsilon| \cdot|h(x)-h(y)| & =|\varepsilon| \cdot \mathbf{d}(x, y)
\end{aligned}
$$

Since $\varepsilon= \pm 1$, its absolute value is one and hence the right hand side is just $\mathbf{d}(x, y)$; therefore $g \circ h$ is distance preserving.■
3. Given $\triangle A B C$, let $D \in(A B)$ and $E \in(B C)$, and let $X \in(D E)$. Prove that X and B lie on the same side of $A C$.

SOLUTION. By construction we have $A * D * B$ and $B * E * C$. These imply that B, D, E all lie on the same side of $A C$ (draw a picture to motivate this if it helps). Now $X \in(D E)$ and by convexity of the two sides of a line, it follows that X lies on the same side of $A C$ as $B, D, E . \square$
4. If P is the plane in \mathbb{R}^{3} defined by the equation $5 x+y+3 z=7$, determine which of the following points lie on the same side of P as $(1,0,-1)$ and which do not: $(-1,-4,9),(-2 .-3,4),(1,-1,1)$, $(2,-8,1)$

SOLUTION. Let $f(x, y, z)=5 x+y+3 z$. Then the two sides of the plane are defined by the inequalities $f<7$ and $f>7$, and the plane is defined by $f=7$. So we need to evaluate f at all points in the problem:

$$
f(1,0,-1)=2 \quad f(1,4,9)=36 \quad f(-2,-3,4)=-1 \quad f(1,-1,1)=7 \quad f(2,-8,1)=5
$$

Therefore $(1,0,-1),(-2,-3,4)$ and $(2,-8.1)$ are all on one side of the plane, while $(1,4,9)$ is on the other and $(1,-1,1)$ lies on the plane.
5. Suppose that we are given $\triangle A B C$ with $B * A * D$ and $B * C * E$, and suppose that $X \in(A C)$. Prove that there is a point Y such that $B * X * Y$.

SOLUTION. We have $A * X * C$, which implies that X lies in the interior of $\angle A B C$, and the latter is equal to $\angle D B E$ because $D \in(B A$ and $E \in B C$. Therefore the Crossbar Theorem implies that the ray ($B X$ meets the open segment $(D E)$ in some point Y. As in Problem 3, betweenness considerations imply that B and X lie on the same side of $D E$. Since $Y \in(B X$ this means that either $B * X * Y$ or $B * Y * X$. If the second were true then B and X would lie on opposite sides of $D E$, and hence we must have $B * X * Y$.
6. Suppose that we are given isosceles triangle $A B C$ in the plane with $|A B|=|A C|$, and let D be such that the ray $\left[A D\right.$ bisects $\angle B A C:|\angle B A D|=|\angle D A C|=\frac{1}{2}|\angle B A C|$. Prove that D is the midpoint of $[B C]$.

SOLUTION. Since $|A D|=|A D|$, the SAS congruence axiom implies that $\triangle B A D \cong \triangle C A D$. This means that $|B D|=|B C|$. By construction D lies in the interior of $\angle C A B$, and therefore we must have $B * D * C$. Therefore D satisfies the conditions for the midpoint of $[B C]$.■

