Solutions for the first problem group

1. Not necessarily. See the picture below.

More precisely, if the four sides have a fixed length \mathbf{L} and $\boldsymbol{\alpha}, \boldsymbol{\beta}$ are positive numbers adding up to $\mathbf{1 8 0}^{\circ}$, then there is a parallelogram whose sides all have length \mathbf{L} and whose opposite pairs of angles have measures α and β.
2. Suppose first that we have a rectangle as below, with right angles at all four vertices. Then $|A B|=|C D|$ and $|A D|=|B C|$ imply the right triangle congruence $\triangle A D C \cong \triangle B C D$ and hence $|A C|=|B D|$.

Conversely, suppose that $|A C|=|B D|$. Since the diagonals of a parallelogram bisect each other we have $|A R|=|R C|=1 / 2|A C|=1 / 2|B D|=|B R|=|R D|$. By the Vertical Angle Theorem we have $|\angle A R B|=|\angle D R C|$ and $|\angle A R D|=|\angle B R C|$, and therefore by SAS we also have $\triangle \mathrm{ARB} \cong \triangle \mathrm{DRC}$ and $\triangle \mathrm{ARD} \cong \triangle B R C$. The second sentence in this paragraph implies that each of these triangles is isosceles such that the two sides of equal length meet at \mathbf{R}, and therefore we also have the following:

$$
\begin{gathered}
|\angle \mathrm{RAB}|=|\angle \mathrm{RBA}|=|\angle \mathrm{RCD}|=|\angle \mathrm{RDC}| \text { and } \\
|\angle \mathrm{RAD}|=|\angle \mathrm{RDA}|=|\angle \mathrm{RBC}|=|\angle \mathrm{RCB}| .
\end{gathered}
$$

The additivity property for angle measure implies that the sum of these eight quantities is equal to the angle sum for the vertex angles of the parallelogram $\mathbf{A B C D}$ and hence equals $\mathbf{3 6 0}^{\circ}$. In fact, we have the following four sequences of equations:

```
\(|\angle A D C|=|\angle A D R|+|\angle R D C|=|\angle A D R|+|\angle R D C|\)
\(|\angle D C B|=|\angle D C R|+|\angle R C B|=|\angle A D R|+|\angle R D C|\)
\(|\angle C B A|=|\angle C B R|+|\angle R B A|=|\angle A D R|+|\angle R D C|\)
\(|\angle B A D|=|\angle B A R|+|\angle R A D|=|\angle A D R|+|\angle R D C|\)
```

It follows that all four vertex angles of the parallelogram have equal measures. Since two consecutive angles of a parallelogram are supplementary, this means that all four vertex angles must be 90° angles and therefore the parallelogram is a rectangle.
3. The picture suggests that [BC] is the longest side. This will follow if we can show that the measure of $\angle B A C$ is greater than the measures of $\angle A B C$ and $\angle A C B$ (which are equal by the Isosceles Triangle Theorem).

Now the angle sum of a triangle is equal to $\mathbf{1 8 0}^{\boldsymbol{}}$, and hence at least two angles must be acute. We have assumed that the vertex angle at \mathbf{A} is obtuse, so therefore the angles at \mathbf{B} and \mathbf{C} must be acute. The desired conclusion now follows because the larger angle is opposite the longer side.
4. The betweenness assumptions $\mathbf{A} * \mathbf{B} * \mathbf{C}$ and $\mathbf{D} * \mathbf{E} * \mathbf{F}$ imply that $|\mathbf{A C}|=|\mathbf{A B}|+|B C|$ and $|\mathrm{DF}|=|\mathrm{DE}|+|\mathrm{EF}|$. Equivalently, we have that $|\mathrm{BC}|=|\mathrm{AC}|-|\mathrm{AB}|$ and $|\mathrm{EF}|=$ $|D F|-|D E|$. Since we are given that $|A C|=|D F|$ and $|A B|=|D E|$, the desired conclusion follows by subtracting the second of these equations from the first.
5. The drawing below may be helpful for understanding the solution.

We are given that $|\angle A B C|=x$ and $|\angle A C B|=y$, so that $|\angle B A C|=180-x-y$. Since [AD is a bisector, we have $|\angle D A C|=90-1 / 2 x-1 / 2 y$. Therefore we have that

$$
|\angle A D C|=180^{\circ}-|\angle A C D|-|\angle D A C|
$$

and if we substitute the values in the preceding two sentences we find that $|\angle A D C|$ is equal to $90+1 / 2 x-1 / 2 y$.

Hints for the problems in' the second group

1. $A D$ is the perpendicular bisector of $[B C]$, and [AD bisects $\triangle B A C$ - To find examples where some points do not licion (AD), take $\mid \nmid \mathrm{BACl}$ close to 180°. (sec page 3)
2.

First shour $A B \perp C D$, then show that $A C \perp B C$.
3. Show that the ratios of similitude for the two similarities are the same (note that [AG] and $[D H]$ are sides of two triangles in the hypotheses). Using the equality of the ratios, imitate the proof of Problem 1 on Examination 2.
4.

This draining many be helpful.

What does the parallelism condition in the converse problem simply about $E-B$ and $D-A$? vector subtraction
5.

Why are $d(A, E), d(E B)$,
$d(A, F)$ and $d(F, C)$ all equal?

Prove that $\triangle E B D \cong \triangle F C D$. Why does this mindy that AD is the perpendicular bisector of [EF]?
6.

$$
\gamma+\delta=180^{\circ}
$$

What does the Sacchori-Legendre Theorem miply? What are the stronger conclusions that hold if the plane is Euclidean or hypabolic?
7. How many acute angles are there in a $\left\{\begin{array}{l}\text { Lambert } \\ \text { Saccheri }\end{array}\right\}$ quadrilateral?
(also see p.3)
8. The point Q is equidistant from A, B, C.
9. For one direction, this follows from a result in Section III. 2 ; for the other, this follows from a result in Section III. 6 .

Additional dawnings for \#1

Neither the circuncenter nor the orthocenter his on (AD) - where do they lie?
Note that both the centroid and sicenter ALWAYS lie on (AD).

Footnote for \#8
To se that the perpendicular bisect ans of $A B \in B C$ are district, notice that if they were the same line L, than $L \perp A B+L \perp B C$ would imply $A B \| B C$ or $A B=B C$, and neither of the latter is true.

