
1. [25 points] Suppose that we are given a convex quadrilateral ABCD in a
neutral plane such that | 6 DAB| = 90◦ = | 6 BCD| and d(A, B) = d(C, D).

(i) Prove that | 6 ABC| = | 6 CDA| and d(B, C) = d(A, D). [Hint: First split the
quadrilateral into two triangles along diagonal [BD], then do the same thing along diagonal
[AC].]

(ii) Explain why the quadrilateral is a rectangle if and only if the plane is Euclidean.

SOLUTION

There are drawings for this exercise on the next page.

(i) By HS for right triangles we have ∆DAB ∼= ∆BCD. Therefore d(B, C) = d(A, D).
Next by SSS we have ∆ABC ∼= ∆CDA. Therefore | 6 ABC| = | 6 CDA|.

(ii) The angle sum of the convex quadrilateral is equal to

180◦ + 2 · | 6 ABC| = 180◦ + | 6 ABC| + | 6 CDA| = 180◦ + 2 · | 6 CDA|

and by a corollary to the Saccheri-Legendre Theorem this sum is ≤ 360◦. If the convex
quadrilateral is a rectangle, then it follows that the plane is Euclidean. Conversely, if the
plane is Euclidean, then the angle sum of the convex quadrilateral is equal to 360◦, and
by the formulas in the first sentence this implies that | 6 ABC| = | 6 CDA| = 90◦, so that
the convex quadrilateral is a rectangle.

Comment. The use of the term “split” in the hint should not have been interpreted
as an assumption that the diagonals [AC] and [BD] in the given quadrilateral bisect the
angles whose vertices are at their endpoints (A or C in the first case, b and D in the
second). In particular, this is never the case in Euclidean geometry for rectangles which
are not squares.
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Drawings to accompany the solution to Problem 1 
 

Both drawings are for part ( i ) of the problem. 
 

 
 

The first step is to show that  ����DAB  ≅≅≅≅  ���� BCD,  and this has to be done using the HS (hypotenuse – 

side) congruence theorem for right triangles,  which by the results in the course notes is valid in neutral 

geometry.   One consequence of this congruence is that  d(A, B)  =  d(C, D),  and the latter yields the data 

in the drawing on the right,  and an application of  SSS  then implies that  ����ABC  ≅≅≅≅  ���� ADC.  Of course, 

the latter in turn shows that   |∠∠∠∠ABC |  =  |∠∠∠∠ADC |.�   

 



2. [20 points] Suppose we are given a hyperbolic plane P and a small real
number h > 0. Prove that there is a triangle ∆ABC in P whose angle defect δ(∆ABC)
is less than h. [Hint: If we are given ∆DEF and G ∈ (EF ), why is at least one of
{δ(∆DEG), δ(∆DGF )} less than or equal to 1

2
δ(∆DEF )?]

SOLUTION

We know that δ(∆DEF ) = {δ(∆DEG) + δ(∆DGF )}. Given three positive real
numbers a, b, c such that a+ b = c, we have either a ≤ 1

2
c or b ≤ 1

2
c for otherwise we would

have a > 1

2
c and b > 1

2
c, which would imply that a + b > c. Combining these, we see

that the assertion in the hint — namely, at least of {δ(∆DEG), δ(∆DGF )} is less than or
equal to 1

2
δ(∆DEF ) — must be true.

We can reformulate the preceding to state that given ∆DEF there is some triangle
∆D1E1F1 such that δ(∆D1E1F1) ≤ 1

2
δ(∆DEF ). Repeating this argument n times for

an arbitrary positive integer n we obtain a triangle ∆DnEnFn such that δ(∆DnEnFn) ≤
(

1

2

)

n

δ(∆DEF ). If h > 0 then we know that there is some value of n such that the
right hand side is less than h, and for this choice of n we have ∆DnEnFn such that
δ(∆DnEnFn) < h.
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3. [15 points] Assume that everything in this exercise lies in some Euclidean plane.

(i) Define the orthocenter of ∆ABC.

(ii) State the Two Circle Theorem.

SOLUTION

(i) This is the point where the altitudes (perpendiculars from A to BC, B to AC and
C to AB) meet.

(ii) As indicated in the hint written on the board, this is a major result from Section
III.6 of the course notes:

Let Γ1 and Γ2 be two circles with centers Q1 and Q2 respectively. If Γ2 contains a point
in the interior of Γ1 and a point in the exterior of Γ1, then Γ1 ∩ Γ2 consists of exactly two
points, with one on each side of the line Q1Q2 joining their centers.

4



4. [20 points] Suppose that we are given four lines L1, L2, M1, M2 in a Euclidean
plane such that L1 ⊥ M1, L2 ⊥ M2, and L1 meets L2 at some point X. Prove that the
lines M1 and M2 have a point in common. You may use the following theorems: (1) If M

and N are parallel lines and K ⊥ M , then K ⊥ N . (2) Two lines perpendicular to a third

line are parallel.

SOLUTION

Suppose that the conclusion is false, so that M1 ||M2. By L1 ⊥ M1 and the first
theorem stated in the problem, this means that L1 ⊥ M2. If we combine this with L2 ⊥ M2

and the second theorem, we conclude that L1 ||L2. But this contradicts our hypothesis
that L1 ⊥ L2, and thus our assumption that M1 ∩ M2 = ∅ must be false, which means
that M1 and M2 have a point in common.
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5. [25 points] Suppose that we are given ∆ABC ∼ ∆AEF in the standard
Euclidean coordinate plane, where E ∈ (AB) and F ∈ (AC).

(i) Vector formulas for E and F are given by E = A+s(B−A) and F = A+ t(C−A)
where 0 < s, t < 1. Explain why s = t.

(ii) Prove that the lines EF and BC are parallel. You may use the fact that neither
E nor F lies on BC.

SOLUTION

(i) Let k be the ratio of similitude. Then we have

k =
|E − A|

|B − A|
=

s|B − A|

|B − A|
= s

k =
|F − A|

|C − A|
=

t|C − A|

|C − A|
= t

and if we combine these equations we see that s = k = t.

(ii) By the conclusion to the first part we have

E − F = (E − A) − (F − A) k(C − A) − k(B − A) = k(C − B)

where k 6= 0 is the ratio of similitude, and since E − F is a nonzero multiple of C −B the
lines EF and BC must be parallel.

6



6. [20 points] (i) Suppose we are given 6 BAC and a point D ∈ (BC). Explain
why D lies in the interior of 6 BAC.

(ii) Let A 6= B be points, and let f : AB → R be a 1–1 correspondence such that
d(X, Y ) = |f(X) − f(Y )| for all points X, Y on the line AB and f(A) > f(B). If C is
a third point on AB, state the inequality or inequalities corresponding to the (separate)
statements A ∗ C ∗ B and A ∗ B ∗ C.

SOLUTION

(i) The ordering relation B ∗D ∗C and basic theorems on betweenness and separation
imply that (a) B and D lie on the same side of AC, (b) C and D lie on the same side of
AB. Since the interior of 6 BAC is the set of all points on the same side of AB as C and
also on the same side of AC as B, this means that D lies in the interior of 6 ABC.

(ii) A ∗C ∗B corresponds to the inequality chain f(A) > f(C) > f(B), and A ∗B ∗C

corresponds to the inequality f(B) > f(C).
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7. [25 points] In a Euclidean plane, a representative pair of noncongruent triangles
satisfying SSA are given by ∆ABC and ∆ABD where B ∗C ∗D and d(A, C) = d(A, D).
Determine the value of the following expression involving the angles with unequal measures:

| 6 DAB| − | 6 CAB| + 2 | 6 ADB|

SOLUTION

To simplify the algebra we shall write the various angle measures as follows:

| 6 ABC = 6 ABD| = β , | 6 ADC = 6 ADB| = δ

| 6 BAC| = α1 , | 6 CAD| = α2

| 6 ACB| = γ1 , | 6 ACD| = γ2

There is a drawing on the next page.

The betweenness relation B∗C∗D implies that C lies in the interior of 6 BAD, and therefore
by the Addition Postulate for angle measures we have | 6 BAD| = α1 + α2. Furthermore,
the Supplement Postulate implies that 180◦ = γ1 + γ2. Finally, the Isosceles Triangle
Theorem implies that γ2 = δ.

Since the angle sum of a Euclidean triangle is 180◦, we also have

α1 + α2 + β + δ = 180◦ , α1 + β + γ1 = 180◦ , α2 + δ + γ2 = 180◦

and therefore the expression in the problem is equal to

(α1 + α2) − α1 + 2δ = α2 + 2δ = α2 + δ + γ2 = 180◦

so the expression in the problem is equal to 180◦.
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Drawing to accompany the solution to Problem 7 
 

 

 
 

Note on triangles satisfying the SSA criterion 
 

As the wording of Problem 7 suggest, if  ����ABC  and  ����XYZ  (with the associated vertex orderings) 

satisfy the  SSA  criteria  d(A, B)  =  d(X, Y),  d(A, C)  =  d(X, Z),   |∠∠∠∠ABC |  =  |∠∠∠∠XYZ |,  and in 

addition  |∠∠∠∠ XYZ |  is  NOT  a right angle (so we avoid issues involving the  HS  congruence theorem for 

right triangles),  then either  ����ABC  ≅≅≅≅  ���� XYZ  or  ����ABD  ≅≅≅≅  ���� XYZ.    One can view this as part of a 

standard problem in trigonometry;  namely, given real numbers  b  and  c  along with an angle measure  

ββββ,  determine the remaining measurements of all triangles  ����ABC  such that   d(A, B)  =  c,  d(A, C)  =  

b,   and  |∠∠∠∠ABC |  =   ββββ.    If   ∠∠∠∠ABC  is an acute angle, then there are 0,  1  or 2  possibilities for the 

remaining measurements depending  upon whether  b  is less than, equal to, or greater than  c sin ββββ,  and 

in this case the setting of the exercise presents both possibilities for the third case.   Several of the online 

references below provide further information about these cases.  On the other hand, if   ∠∠∠∠ABC  is either a 

right or obtuse angle, then there is at most one possibility for the remaining measurements, and such a 

triangle exists if and only if  b  is greater than   c        (see the drawing below).   
 

 
One way of seeing the uniqueness of such triangles is to use Corollary I I I.3.2 in the notes.  If one could 

find a second point  D  on  (BC such that, say,   B∗C∗D  and   d(A, D)  =  d(A, C),  then  ∠∠∠∠ADB   and 

∠∠∠∠ACB   would be an acute angles by that result,  and by the Isosceles Triangle Theorem the same would 

hold for  ∠∠∠∠ACD.   But this is impossible because   ∠∠∠∠ACD   and   ∠∠∠∠ACB   are supplementary.� 
 

Finally, here are some online references concerning noncongruent triangles satisfying   SSA:       
 

http://www.regentsprep.org/Regents/math/algtrig/ATT12/lawofsinesAmbiguous.htm 
 

http://www.ehow.com/how_8680797_solve-triangles-ambiguous-case.html 
 

http://teachers.henrico.k12.va.us/math/ito_08/10AdditionalTrig/10les1/ambiguous_act.pdf 
 

http://mathforum.org/mathimages/index.php/Ambiguous_Case 
 

http://www.algebra.com/algebra/homework/Trigonometry-basics/change-this-name8950.lesson 


