- 1. [25 points] Suppose that we are given a convex quadrilateral ABCD in a neutral plane such that $|\angle DAB| = 90^{\circ} = |\angle BCD|$ and d(A, B) = d(C, D).
- (i) Prove that $|\angle ABC| = |\angle CDA|$ and d(B,C) = d(A,D). [Hint: First split the quadrilateral into two triangles along diagonal [BD], then do the same thing along diagonal [AC].]
 - (ii) Explain why the quadrilateral is a rectangle if and only if the plane is Euclidean.

There are drawings for this exercise on the next page.

- (i) By **HS** for right triangles we have $\Delta DAB \cong \Delta BCD$. Therefore d(B,C) = d(A,D). Next by **SSS** we have $\Delta ABC \cong \Delta CDA$. Therefore $|\angle ABC| = |\angle CDA|$.
 - (ii) The angle sum of the convex quadrilateral is equal to

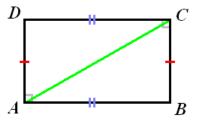
$$180^{\circ} \ + \ 2 \cdot |\angle ABC| \ = \ 180^{\circ} \ + \ |\angle ABC| \ + \ |\angle CDA| \ = \ 180^{\circ} \ + \ 2 \cdot |\angle CDA|$$

and by a corollary to the Saccheri-Legendre Theorem this sum is $\leq 360^{\circ}$. If the convex quadrilateral is a rectangle, then it follows that the plane is Euclidean. Conversely, if the plane is Euclidean, then the angle sum of the convex quadrilateral is equal to 360° , and by the formulas in the first sentence this implies that $|\angle ABC| = |\angle CDA| = 90^{\circ}$, so that the convex quadrilateral is a rectangle.

Comment. The use of the term "split" in the hint should not have been interpreted as an assumption that the diagonals [AC] and [BD] in the given quadrilateral bisect the angles whose vertices are at their endpoints (A or C in the first case, b and D in the second). In particular, this is never the case in Euclidean geometry for rectangles which are not squares.

Drawings to accompany the solution to Problem 1

Both drawings are for part (i) of the problem.



The first step is to show that $\triangle DAB \cong \triangle BCD$, and this has to be done using the HS (hypotenuse – side) congruence theorem for right triangles, which by the results in the course notes is valid in neutral geometry. One consequence of this congruence is that d(A, B) = d(C, D), and the latter yields the data in the drawing on the right, and an application of SSS then implies that $\triangle ABC \cong \triangle ADC$. Of course, the latter in turn shows that $|\angle ABC| = |\angle ADC|$.

2. [20 points] Suppose we are given a hyperbolic plane **P** and a small real number h > 0. Prove that there is a triangle ΔABC in **P** whose angle defect $\delta(\Delta ABC)$ is less than h. [Hint: If we are given ΔDEF and $G \in (EF)$, why is at least one of $\{\delta(\Delta DEG), \delta(\Delta DGF)\}$ less than or equal to $\frac{1}{2}\delta(\Delta DEF)$?]

SOLUTION

We know that $\delta(\Delta DEF) = \{\delta(\Delta DEG) + \delta(\Delta DGF)\}$. Given three positive real numbers a,b,c such that a+b=c, we have either $a\leq \frac{1}{2}c$ or $b\leq \frac{1}{2}c$ for otherwise we would have $a>\frac{1}{2}c$ and $b>\frac{1}{2}c$, which would imply that a+b>c. Combining these, we see that the assertion in the hint — namely, at least of $\{\delta(\Delta DEG), \delta(\Delta DGF)\}$ is less than or equal to $\frac{1}{2}\delta(\Delta DEF)$ — must be true.

We can reformulate the preceding to state that given ΔDEF there is some triangle $\Delta D_1 E_1 F_1$ such that $\delta(\Delta D_1 E_1 F_1) \leq \frac{1}{2} \delta(\Delta DEF)$. Repeating this argument n times for an arbitrary positive integer n we obtain a triangle $\Delta D_n E_n F_n$ such that $\delta(\Delta D_n E_n F_n) \leq \left(\frac{1}{2}\right)^n \delta(\Delta DEF)$. If h > 0 then we know that there is some value of n such that the right hand side is less than h, and for this choice of n we have $\Delta D_n E_n F_n$ such that $\delta(\Delta D_n E_n F_n) < h$.

- 3. [15 points] Assume that everything in this exercise lies in some Euclidean plane.
- (i) Define the orthocenter of $\triangle ABC$.
- (ii) State the Two Circle Theorem.

- (i) This is the point where the altitudes (perpendiculars from A to BC, B to AC and C to AB) meet.
- (ii) As indicated in the hint written on the board, this is a major result from Section III.6 of the course notes:

Let Γ_1 and Γ_2 be two circles with centers Q_1 and Q_2 respectively. If Γ_2 contains a point in the interior of Γ_1 and a point in the exterior of Γ_1 , then $\Gamma_1 \cap \Gamma_2$ consists of exactly two points, with one on each side of the line Q_1Q_2 joining their centers.

4. [20 points] Suppose that we are given four lines L_1, L_2, M_1, M_2 in a Euclidean plane such that $L_1 \perp M_1$, $L_2 \perp M_2$, and L_1 meets L_2 at some point X. Prove that the lines M_1 and M_2 have a point in common. You may use the following theorems: (1) If M and N are parallel lines and $K \perp M$, then $K \perp N$. (2) Two lines perpendicular to a third line are parallel.

SOLUTION

Suppose that the conclusion is false, so that $M_1 \mid\mid M_2$. By $L_1 \perp M_1$ and the first theorem stated in the problem, this means that $L_1 \perp M_2$. If we combine this with $L_2 \perp M_2$ and the second theorem, we conclude that $L_1 \mid\mid L_2$. But this contradicts our hypothesis that $L_1 \perp L_2$, and thus our assumption that $M_1 \cap M_2 = \emptyset$ must be false, which means that M_1 and M_2 have a point in common.

- **5.** [25 points] Suppose that we are given $\Delta ABC \sim \Delta AEF$ in the standard Euclidean coordinate plane, where $E \in (AB)$ and $F \in (AC)$.
- (i) Vector formulas for E and F are given by E = A + s(B A) and F = A + t(C A) where 0 < s, t < 1. Explain why s = t.
- (ii) Prove that the lines EF and BC are parallel. You may use the fact that neither E nor F lies on BC.

(i) Let k be the ratio of similar tude. Then we have

$$k = \frac{|E - A|}{|B - A|} = \frac{s|B - A|}{|B - A|} = s$$

$$k = \frac{|F - A|}{|C - A|} = \frac{t|C - A|}{|C - A|} = t$$

and if we combine these equations we see that s = k = t.

(ii) By the conclusion to the first part we have

$$E - F = (E - A) - (F - A) k(C - A) - k(B - A) = k(C - B)$$

where $k \neq 0$ is the ratio of similitude, and since E - F is a nonzero multiple of C - B the lines EF and BC must be parallel.

- **6.** [20 points] (i) Suppose we are given $\angle BAC$ and a point $D \in (BC)$. Explain why D lies in the interior of $\angle BAC$.
- (ii) Let $A \neq B$ be points, and let $f: AB \to \mathbf{R}$ be a 1–1 correspondence such that d(X,Y) = |f(X) f(Y)| for all points X,Y on the line AB and f(A) > f(B). If C is a third point on AB, state the inequality or inequalities corresponding to the (separate) statements A*C*B and A*B*C.

- (i) The ordering relation B*D*C and basic theorems on betweenness and separation imply that (a) B and D lie on the same side of AC, (b) C and D lie on the same side of AB. Since the interior of $\angle BAC$ is the set of all points on the same side of AB as C and also on the same side of AC as B, this means that D lies in the interior of $\angle ABC$.
- (ii) A * C * B corresponds to the inequality chain f(A) > f(C) > f(B), and A * B * C corresponds to the inequality f(B) > f(C).

7. [25 points] In a Euclidean plane, a representative pair of noncongruent triangles satisfying **SSA** are given by $\triangle ABC$ and $\triangle ABD$ where B*C*D and d(A,C)=d(A,D). Determine the value of the following expression involving the angles with unequal measures:

$$|\angle DAB| - |\angle CAB| + 2|\angle ADB|$$

SOLUTION

To simplify the algebra we shall write the various angle measures as follows:

$$|\angle ABC = \angle ABD| = \beta, |\angle ADC = \angle ADB| = \delta$$
$$|\angle BAC| = \alpha_1, |\angle CAD| = \alpha_2$$
$$|\angle ACB| = \gamma_1, |\angle ACD| = \gamma_2$$

There is a drawing on the next page.

The betweenness relation B*C*D implies that C lies in the interior of $\angle BAD$, and therefore by the Addition Postulate for angle measures we have $|\angle BAD| = \alpha_1 + \alpha_2$. Furthermore, the Supplement Postulate implies that $180^{\circ} = \gamma_1 + \gamma_2$. Finally, the Isosceles Triangle Theorem implies that $\gamma_2 = \delta$.

Since the angle sum of a Euclidean triangle is 180°, we also have

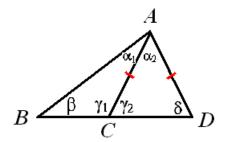
$$\alpha_1 + \alpha_2 + \beta + \delta = 180^{\circ}, \quad \alpha_1 + \beta + \gamma_1 = 180^{\circ}, \quad \alpha_2 + \delta + \gamma_2 = 180^{\circ}$$

and therefore the expression in the problem is equal to

$$(\alpha_1 + \alpha_2) - \alpha_1 + 2\delta = \alpha_2 + 2\delta = \alpha_2 + \delta + \gamma_2 = 180^{\circ}$$

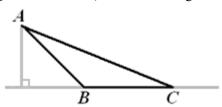
so the expression in the problem is equal to 180°.

Drawing to accompany the solution to Problem 7



Note on triangles satisfying the SSA criterion

As the wording of Problem 7 suggest, if $\triangle ABC$ and $\triangle XYZ$ (with the associated vertex orderings) satisfy the SSA criteria d(A, B) = d(X, Y), d(A, C) = d(X, Z), $|\angle ABC| = |\angle XYZ|$, and in addition $|\angle XYZ|$ is NOT a right angle (so we avoid issues involving the HS congruence theorem for right triangles), then either $\triangle ABC \cong \triangle XYZ$ or $\triangle ABD \cong \triangle XYZ$. One can view this as part of a standard problem in trigonometry; namely, given real numbers b and c along with an angle measure b, determine the remaining measurements of all triangles b such that b and b are b and b and b and b are b and b and b are b are b and b are b are b and b are b are b are b and b are b are b and b are b and b are b and b are b and b are b and b are b are b and b are b are b are b are b are b are b and b are b are b and b are b and b are b are



One way of seeing the uniqueness of such triangles is to use Corollary III.3.2 in the notes. If one could find a second point D on (BC) such that, say, B*C*D and d(A,D) = d(A,C), then $\angle ADB$ and $\angle ACB$ would be an acute angles by that result, and by the Isosceles Triangle Theorem the same would hold for $\angle ACD$. But this is impossible because $\angle ACD$ and $\angle ACB$ are supplementary.

Finally, here are some online references concerning noncongruent triangles satisfying **SSA**:

http://www.regentsprep.org/Regents/math/algtrig/ATT12/lawofsinesAmbiguous.htm

http://www.ehow.com/how 8680797 solve-triangles-ambiguous-case.html

http://teachers.henrico.k12.va.us/math/ito_08/10AdditionalTrig/10les1/ambiguous_act.pdf

http://mathforum.org/mathimages/index.php/Ambiguous_Case

http://www.algebra.com/algebra/homework/Trigonometry-basics/change-this-name8950.lesson