BETWEENNESS AND VECTOR ALGEBRA

If \mathbf{a} and \mathbf{b} are distinct points of \mathbb{R}^{n} (where $n=2$ or 3), then the points of the line $\mathbf{a b}$ have the form

$$
\mathbf{x}=\mathbf{a}+t(\mathbf{b}-\mathbf{a})
$$

for some uniquely determined scalar t. Given three points $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ on $\mathbf{a b}$ with associated scalars t_{1}, t_{2}, and t_{3} respectively, we shall describe the betweenness condition $\mathbf{x}_{1} * \mathbf{x}_{2} * \mathbf{x}_{3}$ in terms of t_{1}, t_{2}, and t_{3}.
THEOREM. Let $\mathbf{a} \neq \mathbf{b}$ in \mathbb{R}^{n}, for $i=1,2,3$ let $\mathbf{x}_{i}=\mathbf{a}+t_{i}(\mathbf{b}-\mathbf{a})$ for suitably chosen scalars t_{i}, and assume that the points \mathbf{x}_{i} are distinct. Then the betweenness relation $\mathbf{x}_{1} * \mathbf{x}_{2} * \mathbf{x}_{3}$ holds if and only if either $t_{1}<t_{2}<t_{3}$ or $t_{1}>t_{2}>t_{3}$.

Proof. We shall begin with some general remarks. If $\mathbf{x}_{i}=\mathbf{a}+t_{i}(\mathbf{b}-\mathbf{a})$ as above, then we have

$$
d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\|t_{i}(\mathbf{b}-\mathbf{a})-t_{j}(\mathbf{b}-\mathbf{a})\right\|=\left\|\left(t_{i}-t_{j}\right)(\mathbf{b}-\mathbf{a})\right\|=\left|t_{i}-t_{j}\right| \cdot\|\mathbf{b}-\mathbf{a}\|
$$

Since $\mathbf{x}_{1} * \mathbf{x}_{2} * \mathbf{x}_{3}$ holds if and only if

$$
d\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right)=d\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)+d\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right)
$$

and the latter holds if and only if

$$
\left|t_{1}-t_{3}\right| \cdot\|\mathbf{b}-\mathbf{a}\|=\left|t_{1}-t_{2}\right| \cdot\|\mathbf{b}-\mathbf{a}\|+\left|t_{2}-t_{3}\right| \cdot\|\mathbf{b}-\mathbf{a}\|
$$

Since $\mathbf{a} \neq \mathbf{b}$, the quantity $\|\mathbf{b}-\mathbf{a}\|$ is positive, and therefore the last equation is equivalent to

$$
\left|t_{1}-t_{3}\right|=\left|t_{1}-t_{2}\right|+\left|t_{2}-t_{3}\right|
$$

Therefore we need to show that the preceding equation holds if and only if $t_{1}<t_{2}<t_{3}$ or $t_{1}>t_{2}>t_{3}$.

By our hypotheses the numbers t_{1}, t_{2} and t_{3} are distinct, and accordingly the conclusion can be split into two parts:
(A) If $t_{1}<t_{2}$, then $\mathbf{x}_{1} * \mathbf{x}_{2} * \mathbf{x}_{3}$ holds if and only if $t_{2}<t_{3}$.
(B) If $t_{1}>t_{2}$, then $\mathbf{x}_{1} * \mathbf{x}_{2} * \mathbf{x}_{3}$ holds if and only if $t_{2}>t_{3}$.

Case (A): We are given that $t_{1}<t_{2}$. If $t_{2}<t_{3}$ then

$$
\left|t_{1}-t_{3}\right|=t_{3}-t_{1}=\left(t_{3}-t_{2}\right)+\left(t_{2}-t_{1}\right)=\left|t_{3}-t_{2}\right|+\left|t_{2}-t_{1}\right|
$$

and therefore we have $\mathbf{x}_{1} * \mathbf{x}_{2} * \mathbf{x}_{3}$.
To prove the converse, we shall show that if $t_{2}<t_{3}$ is false - which in our setting means that $t_{2}>t_{3}$ - then $\mathbf{x}_{1} * \mathbf{x}_{2} * \mathbf{x}_{3}$ does not hold. There are two subcases, depending
upon whether $t_{1}<t_{3}$ or $t_{1}>t_{3}$. In the first subcase, if $\mathbf{x}_{1} * \mathbf{x}_{2} * \mathbf{x}_{3}$ holds, then the condition on the t_{i} can be rewritten as

$$
t_{3}-t_{1}=2 t_{2}-t_{3}-t_{1}
$$

which implies that $2 t_{3}=2 t_{2}$ and hence $t_{3}=t_{2}$, which contradicts the fact that the t_{i} are distinct. Therefore $\mathbf{x}_{1} * \mathbf{x}_{2} * \mathbf{x}_{3}$ does not hold if $t_{1}<t_{2}, t_{2}>t_{3}$, and $t_{1}<t_{3}$. On the other hand, if $t_{1}>t_{3}$ then then similar considerations imply that if $\mathbf{x}_{1} * \mathbf{x}_{2} * \mathbf{x}_{3}$ holds, then the condition on the t_{i} can be rewritten as

$$
t_{1}-t_{3}=2 t_{2}-t_{3}-t_{1}
$$

which implies that $2 t_{1}=2 t_{2}$ and hence $t_{1}=t_{2}$, which again contradicts the fact that the t_{i} are distinct. Therefore $\mathbf{x}_{1} * \mathbf{x}_{2} * \mathbf{x}_{3}$ also does not hold if $t_{1}<t_{2}, t_{2}>t_{3}$, and $t_{1}>t_{3}$. Combining these, we see that $\mathbf{x}_{1} * \mathbf{x}_{2} * \mathbf{x}_{3}$ does not hold if $t_{1}<t_{2}$, and $t_{2}>t_{3}$. Therefore if $\mathbf{x}_{1} * \mathbf{x}_{2} * \mathbf{x}_{3}$ holds and $t_{1}<t_{2}$, then we must also have $t_{2}<t_{3}$.

Case (B): We are given that $t_{1}>t_{2}$. If we let $u_{i}=-t_{i}$, then the conditions

$$
\left|t_{1}-t_{3}\right|=\left|t_{1}-t_{2}\right|+\left|t_{2}-t_{3}\right|, \quad\left|u_{1}-u_{3}\right|=\left|u_{1}-u_{2}\right|+\left|u_{2}-t_{3}\right|
$$

are equivalent to each other, and we have $u_{1}<u_{2}$. Since the numbers u_{i} are distinct if and only if the numbers t_{i} are, we can now use the argument in Case (A) to show that the displayed equations hold if and only if $u_{2}<u_{3}$. If we translate this back into a statement about the t_{i}, we conclude that if $t_{1}>t_{2}$ then the displayed equation holds if and only if $t_{2}>t_{3}$.

This result allows us to translate statements about betweenness of collinear points into inequality statements involving real numbers and vice versa.

