BETWEENNESS AND VECTOR ALGEBRA

If **a** and **b** are distinct points of \mathbb{R}^n (where n = 2 or 3), then the points of the line **ab** have the form

$$\mathbf{x} = \mathbf{a} + t(\mathbf{b} - \mathbf{a})$$

for some uniquely determined scalar t. Given three points \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 on **ab** with associated scalars t_1 , t_2 , and t_3 respectively, we shall describe the betweenness condition $\mathbf{x}_1 * \mathbf{x}_2 * \mathbf{x}_3$ in terms of t_1 , t_2 , and t_3 .

THEOREM. Let $\mathbf{a} \neq \mathbf{b}$ in \mathbb{R}^n , for i = 1, 2, 3 let $\mathbf{x}_i = \mathbf{a} + t_i(\mathbf{b} - \mathbf{a})$ for suitably chosen scalars t_i , and assume that the points \mathbf{x}_i are distinct. Then the betweenness relation $\mathbf{x}_1 * \mathbf{x}_2 * \mathbf{x}_3$ holds if and only if either $t_1 < t_2 < t_3$ or $t_1 > t_2 > t_3$.

Proof. We shall begin with some general remarks. If $\mathbf{x}_i = \mathbf{a} + t_i(\mathbf{b} - \mathbf{a})$ as above, then we have

$$d(\mathbf{x}_i, \mathbf{x}_j) = \left\| t_i(\mathbf{b} - \mathbf{a}) - t_j(\mathbf{b} - \mathbf{a}) \right\| = \left\| (t_i - t_j)(\mathbf{b} - \mathbf{a}) \right\| = \left| t_i - t_j \right| \cdot \left\| \mathbf{b} - \mathbf{a} \right\|.$$

Since $\mathbf{x}_1 * \mathbf{x}_2 * \mathbf{x}_3$ holds if and only if

$$d(\mathbf{x}_1, \mathbf{x}_3) = d(\mathbf{x}_1, \mathbf{x}_2) + d(\mathbf{x}_2, \mathbf{x}_3)$$

and the latter holds if and only if

$$|t_1 - t_3| \cdot ||\mathbf{b} - \mathbf{a}|| = |t_1 - t_2| \cdot ||\mathbf{b} - \mathbf{a}|| + |t_2 - t_3| \cdot ||\mathbf{b} - \mathbf{a}||.$$

Since $\mathbf{a} \neq \mathbf{b}$, the quantity $\|\mathbf{b} - \mathbf{a}\|$ is positive, and therefore the last equation is equivalent to

$$|t_1 - t_3| = |t_1 - t_2| + |t_2 - t_3|.$$

Therefore we need to show that the preceding equation holds if and only if $t_1 < t_2 < t_3$ or $t_1 > t_2 > t_3$.

By our hypotheses the numbers t_1 , t_2 and t_3 are distinct, and accordingly the conclusion can be split into two parts:

- (A) If $t_1 < t_2$, then $\mathbf{x}_1 * \mathbf{x}_2 * \mathbf{x}_3$ holds if and only if $t_2 < t_3$.
- (B) If $t_1 > t_2$, then $\mathbf{x}_1 * \mathbf{x}_2 * \mathbf{x}_3$ holds if and only if $t_2 > t_3$.

Case (A): We are given that $t_1 < t_2$. If $t_2 < t_3$ then

$$|t_1 - t_3| = t_3 - t_1 = (t_3 - t_2) + (t_2 - t_1) = |t_3 - t_2| + |t_2 - t_1|$$

and therefore we have $\mathbf{x}_1 * \mathbf{x}_2 * \mathbf{x}_3$.

To prove the converse, we shall show that if $t_2 < t_3$ is false — which in our setting means that $t_2 > t_3$ — then $\mathbf{x}_1 * \mathbf{x}_2 * \mathbf{x}_3$ does not hold. There are two subcases, depending

upon whether $t_1 < t_3$ or $t_1 > t_3$. In the first subcase, if $\mathbf{x}_1 * \mathbf{x}_2 * \mathbf{x}_3$ holds, then the condition on the t_i can be rewritten as

$$t_3 - t_1 = 2t_2 - t_3 - t_1$$

which implies that $2t_3 = 2t_2$ and hence $t_3 = t_2$, which contradicts the fact that the t_i are distinct. Therefore $\mathbf{x}_1 * \mathbf{x}_2 * \mathbf{x}_3$ does not hold if $t_1 < t_2$, $t_2 > t_3$, and $t_1 < t_3$. On the other hand, if $t_1 > t_3$ then then similar considerations imply that if $\mathbf{x}_1 * \mathbf{x}_2 * \mathbf{x}_3$ holds, then the condition on the t_i can be rewritten as

$$t_1 - t_3 = 2t_2 - t_3 - t_1$$

which implies that $2t_1 = 2t_2$ and hence $t_1 = t_2$, which again contradicts the fact that the t_i are distinct. Therefore $\mathbf{x}_1 * \mathbf{x}_2 * \mathbf{x}_3$ also does not hold if $t_1 < t_2$, $t_2 > t_3$, and $t_1 > t_3$. Combining these, we see that $\mathbf{x}_1 * \mathbf{x}_2 * \mathbf{x}_3$ does not hold if $t_1 < t_2$, and $t_2 > t_3$. Therefore if $\mathbf{x}_1 * \mathbf{x}_2 * \mathbf{x}_3$ holds and $t_1 < t_2$, then we must also have $t_2 < t_3$.

Case (B): We are given that $t_1 > t_2$. If we let $u_i = -t_i$, then the conditions

$$|t_1 - t_3| = |t_1 - t_2| + |t_2 - t_3|, |u_1 - u_3| = |u_1 - u_2| + |u_2 - t_3|$$

are equivalent to each other, and we have $u_1 < u_2$. Since the numbers u_i are distinct if and only if the numbers t_i are, we can now use the argument in Case (A) to show that the displayed equations hold if and only if $u_2 < u_3$. If we translate this back into a statement about the t_i , we conclude that if $t_1 > t_2$ then the displayed equation holds if and only if $t_2 > t_3$.

This result allows us to translate statements about betweenness of collinear points into inequality statements involving real numbers and vice versa.