Alternate approach to the result in betweenness.pdf. We have $y_{i}=t_{i} x+\left(1-t_{i}\right) z$ for $i=1,2,3$. If we put the t_{i} in order there are six cases corresponding to the permutations of $\{1,2,3\}$. Look at each of these individually and see that $y_{1} * y_{2} * y_{3}$ is true if $t_{1}<t_{2}<t_{3}$ or vice versa, and the betweenness statement is false in the remaining four cases.
(B1) is valid in the coordinate plane. Let t_{p} be such that $p=b+t_{p}(d-b)$; to define the points a, c, e take $t_{a}=-1, t_{c}=\frac{1}{2}$ and $t_{c}=2$.
(B2) is valid in the coordinate plane. Same notation as above without the specific values for t_{a}, t_{b}, t_{c}. Put t_{a}, t_{b}, t_{c} in order to see which point is between the other two.

Alternate proof of Proposition 4. We are given $a * b * d$ and $b * c * d$. Write $p=a+t_{p}(b-a)$ as before. Then $t_{a}=0, t_{b}=1$ and the hypotheses can be rewritten as
(1) Either $0<1<t_{d}$ or else $t_{d}<1<0$,
(2) Either $1<t_{c}<t_{d}$ or else $t_{d}<t_{c}<1$.

We can rule out the second option in (1) because $1<0$ is false, so that $0<1<t_{d}$. The only option in (2) consistent with the latter is $1<t_{c}<t_{d}$, so that $0<1<t_{c}<t_{d}$. But these imply that $a * b * c$ and $b * c * d$ are true.

The next one was not done in class, but it is similar and might shed some light on the method in the previous paragraph.

Alternate proof of Example 3, page 49. Same notational conventions as in the preceding discussion; in particular, we have $t_{a}=0$ and $t_{b}=1$. Then $a * b * c$ means that $0<1<t_{c}$ or else $t_{c}<1<0$, so the former must be true. Also, $b * x * c$ means that $1<t_{x}<t_{c}$ or else $t_{c}<t_{x}<1$, and by the previous sentence this shows that $1<t_{x}<t_{c}$ must be true. Therefore $0<t_{x}<t_{c}$, so that $a * x * c$ must be true.

For the sake of completeness, here is one more.
Alternate proof of Example 2, page 49. Much as before, define t_{x} by $x=b+t_{x}(c-b)$. Since $a * b * c$ is true, the same kind of reasoning as before means that $t_{a}<0=t_{b}<1=t_{c}$. If $p \in[b c$ then $t_{p} \geq 0$, and if equality holds, then $p=b$; and in this case we know $p=b \in[a c$, so suppose that $t_{p}>0$. But then we have $t_{a}<0$ while t_{p} and $t_{c}=1$ are both positive, so it follows that either $a * p * c$ is true or $a * c * p$ is true. In either case $p \in[a c$, and hence we have shown that $[b c \subset[a c$.

