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Readings for Mathematics 133, Fall 2013, from  
 

Stillwell,  The Four Pillars of Geometry 
 
 

 General remarks 

 
This book presents geometry as a subject which can be approached logically from four 
separate directions 
 

1. The classical Greek (synthetic) approach. 
2. The (analytic) approach using vector geometry and linear algebra. 

3. The projective – geometric approach,  which provides a unified 

viewpoint for studying many topics and problems. 
4. The use of geometric transformations. 

 

Forms of all four approaches are present in the files of course notes.  However, the third 

approach – which is discussed at length in Unit I V of the course notes – will not be 
covered in the course itself.  Furthermore, the fourth approach receives far less attention 
than the synthetic and analytic approaches, and this is mainly restricted to a discussion 
of congruence and similarity for geometrical figures. 
 

The title of the book is derived from a Chinese (also Japanese and Korean) concept  
 

四四四四    柱柱柱柱    命命命命    理理理理    學學學學 
 

involving data that are supposed to shape an individual’s destiny; the Wikipedia article  
 

http://en.wikipedia.org/wiki/Four_Pillars_of_Destiny 
 

contains (unchecked) further information on this topic.   Some comments in the Preface 
to Stillwell’s book reflect some similarities between his book and the viewpoint of this 
course: 
 

Geometry, of all subjects, should be about taking different viewpoints, and 
geometry is unique among the mathematical disciplines in its ability to look 
different from different angles [not everyone would agree with the assertion 
of uniqueness].  Some prefer to approach it visually, others algebraically, but  
…  they are all looking at the same thing.  … 
 

The many faces of geometry are [potentially]  …  a great help to the learner 
and teacher.   We all know that some students prefer to visualize, whereas 
others prefer to reason or to calculate.  Geometry has something for 
everybody, and all students will find themselves building on their strengths at 
some times, and working to overcome weaknesses at other times.  We also 
know that Euclid has some beautiful proofs, whereas other theorems are 
more beautifully proved by algebra. In the multifaceted approach, every 
theorem can be given an elegant  [or at least the most transparent]  proof, 
and theorems with radically different proofs can be viewed from different 
sides. 
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Readings for Unit I from Stillwell 

(Topics from linear algebra) 
 
 

 I.0 : Background 
 
 
Suggested  readings.   
 

Stillwell :  Sections  3.1,  4.1,  4.2,  4.8  
 
 
 

I.1 : Dot products 
 
 
Suggested  readings.   
 

Stillwell :  Sections  3.1,  3.5,  4.4,  4.5,  4.6  
 
 

I.2 : Cross products 
 
 
Suggested  readings.   
 

[None] 
 
 

I. 3 : Linear varieties 
 
 
Suggested  readings.   
 

Stillwell :  Section  3.2   
 
 

I.4 : Barycentric coordinates 
 
 
Suggested  readings.   
 

Stillwell :  Section  4.3  
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Readings for Unit I I from Stillwell 

(Vector algebra and Euclidean geometry) 
 
 

 I I.1 : Approaches to Euclidean geometry 
 
 

Suggested  readings.   
 

Stillwell :  Sections  2.9,  3.2   

 
 
 

I I.2 : Synthetic axioms of order and separation 
 

 

Suggested  readings.   
 

Stillwell :  Sections  2.9,  3.2,  3.3  

 
 
 

I I.3 : Measurement axioms 
 
 

Suggested  readings.   
 

Stillwell :  Sections  2.2,  2.9,  3.5  

 
 
 

I I.4 : Congruence, superposition and isometries 
 
 

Suggested  readings.   
 

Stillwell :  Sections  2.2,  2.9,  3.6,  3.7,  4.7,  7.1,  7.2,  7.9       
 
Comments.   
 

The material in Section  3.7  is at a higher level than that of the course and will not be 
covered;  a reference is included because the topic may be of interest to some readers. 
 
 
 

I I.5 : Euclidean parallelism 
 
 

Suggested  readings.   
 

Stillwell :  Sections  2.1,  2.9,  7.9     
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Readings for Unit I I I from Stillwell 

(Basic Euclidean concepts and theorems) 
 
 

 I I I.1 : Perpendicular lines and planes 
 
 

Supplementary background readings.   
 

[None]      
 
Comments.   
 

Perpendicularity is first defined in  Section  1.3  of Stillwell using classical geometrical 
constructions. 
 
 

I I I.2 : Basic theorems on triangles 
 

 

Supplementary background readings.   
 

Stillwell :  Sections  2.1,  2.2,  2.5,  2.8,  3.3       
 
Comments.   
 

The proof of the Pythagorean Theorem in Section  2.5  of Stillwell involves areas (which 

are not covered until Section  III.7  in this  course), and this proof is entirely different 
from the one in the course notes.   There are many proofs that are much shorter and 
easier to follow, even if one uses area theory; for example, the drawing which appears in 
the file http://math.ucr.edu/~res/math153/pythagorean-thm.pdf  is clearly much simpler 
than the one considered in Section   2.5  of Stillwell.  The latter proof appears in the  
Elements;  although the value of the proof is mainly historic, the presentation in Stillwell 
provides a particularly clear overview of the argument.   In a purely synthetic but logically 
rigorous approach to elementary geometry, the simplest way of proving the Pythagorean 
Theorem is probably by means  of similar triangles along the lines of the argument in 

Section  2.8  of Stillwell (in the course notes, similar triangles are discussed in Section  

III.5). 
 
 

I I I.3 : Convex polygons 
 

 

Supplementary background readings.   
 

Stillwell :  Sections  2.2,  4.3    
 
Comments.   
 

The discussion of quadrilaterals in Stillwell is almost entirely limited to a few results 
about parallelograms. 
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I I I.4 : Concurrence theorems 
 
 

Supplementary background readings.   
 

Stillwell :  Sections  2.1,  2.9,  3.3,  4.3     
 
Comments.   
 

A very instructive proof for a  3 – dimensional analog of the Triangle Centroid Theorem   

(Theorem  III.4.1)  is outlined in the Exercises for Section  4.3  of Stillwell. 
 
 

I I I.5 : Similarity 
 

 

Supplementary background readings.   
 

Stillwell :  Sections  1.5,  2.6,  2.8     
 
Comments.   
 

The proof of the basic similarity theorem (called Thales’ Theorem in Stillwell) involves 
areas,  and as such it is entirely different from the proof of the corresponding result in the 

course notes (see Theorem  III.5.10).    A proof of the Pythagorean Theorem using 
similar triangles is described in Section  2.8  of Stillwell. 

 
 

I I I.6 : Circles and constructions 
 

 

Supplementary background readings.   
 

Stillwell :  Sections  1.1,  1.2,  1.3,  1.4,  1.6,  2.7,  3.4,  3.8     
 
Comments.   
 

The treatment in Stillwell places a great deal of emphasis on classical geometrical 
constructions, while the latter are only mentioned fairly briefly in the course notes.   Also, 
the main result in Section  2.7  of Stillwell, which deals  with the measures of an angle 
inscribed in a circle and its intercepted arc, is mentioned (with an illustration) on page  

137  of the course notes (see the file  http://math.ucr.edu/~res/math133/semicircle-thm.pdf  for 
a special case).  Finally, the main results of Section  3.4  of Stillwell are covered in 

Section  III.6  of the course notes.  
 
Section  3.8  of Stillwell contains a few remarks about  algebraic geometry, a subject 
which originated in the study of curves in the coordinate plane which are defined by 
solutions to polynomial equations in the coordinates.  Circles are obvious examples of 
curves defined by second degree polynomials in two variables, and the latter class also 
includes the standard conic section curves.  The following two comments on this topic 
give some further information: 
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1. Stillwell gives two references for further information about algebraic geometry 

(namely,  Brieskorn – Knörrer, which Stillwell translated into English very 

successfully,  and  McKean – Moll).   Other books on this topic at the advanced 

undergraduate  level include  (1)  G. Fischer,  Plane Algebraic Curves,  (2)  W. 
Jenner,  Rudiments of Algebraic Geometry,  (3)  M. Reid,  Undergraduate  
Algebraic Geometry,  and  (4)  A. Seidenberg,  Elements of the Theory of 
Algebraic Curves  (this list is not meant to be exhaustive).   For most of these 
books, the material becomes considerably more challenging after the first one or 
two chapters.   In particular, this statement applies to the discussion of third 

degree curves in each book and most notably to McKean – Moll,  which is really 

a study of such curves rather than an introduction to algebraic geometry in 
general.  The subject of third degree curves has been studied extensively over 
the past three centuries, it has seen many very remarkable discoveries, and it 
has an extremely wide range of applications to subjects from modern theoretical 
physics to coding theory. 

 
2. The assertion that linear algebra is contained in algebraic geometry is 

oversimplified and ultimately misleading.   As with many topics in mathematics, 
both of these subjects have grown, and to a great extent they have gone their 
separate ways;  unfortunately,  a detailed explanation of the latter quickly gets far 
beyond the level of this course.    

 
 

I I I.7 : Areas and volumes 
 

 

Supplementary background readings.   
 

Stillwell :  Sections  2.1,  2.3,  2.4,  2.5.  2.6      
 
Comments.   
 

Stillwell’s treatment of area is basically informal and includes historical background from 
Greek geometry.   As noted previously, at a few points Stillwell uses considerations 
involving area to derive some fundamental theorems in Euclidean geometry.    
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Readings for Unit IV from Stillwell 

(Projective geometry) 
 

Since this material is not covered in the course, there are only a few 
comments to compare and contrast the material in Stillwell and the 

course notes.   

 
 IV.1 : Perspective images 

 
 

Supplementary background readings.   
 

Stillwell :  Sections  5.1,  5.2,  5.5,  7.9    
 
Comment.   
 

Among other things,  Section  7.9  of Stillwell discusses an alternative to the standard 
method for representing parallel lines which is central to the theory of perspective 
drawing; the approach is taken from 18th century Japanese art.   However, no evidence 

is presented to support an assertion on page  170  of Stillwell that affine geometry is 
derived from Chinese and Japanese drawing techniques. 
 
 

IV.2 : Adjoining ideal points 
 

 

Suggested  readings.   
 

Stillwell :  Sections  5.3,  5.4 
 
 

I V.3 : Homogeneous coordinates 
 
 

Suggested  readings.   
 

Stillwell :  Sections  5.3,  5.4,  5.9,  6.4  –  6.7  
 
 

I V.4 : Projective duality 
 
 

Suggested  readings.   
 

Stillwell :  Section  5.3  
 
Comment.   
 

The concept of duality in projective geometry does not appear explicitly in Stillwell.      
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I V.5 : Theorems of Desargues and Pappus 
 
 

Suggested  readings.   
 

Stillwell :  Sections  5.4,  5.9,  6.1  –  6.3,  6.8 
 
 

I V.6 : Cross ratios and projective collineations 
 
 

Suggested  readings.   
 

Stillwell :  Sections  5.4  –  5. 9,  7.3    

 
Comment.   
 

The cross ratio plays an important role in each of the models for non – Euclidean  

geometry which appear subsequently in the Unit  V. 
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Readings for Unit V from Stillwell  

(Introduction to non – Euclidean geometry) 
 
 

 V.1 : Facts from spherical geometry 
 
 
Supplementary background readings.   
 

Stillwell :  Sections  7.4,  7.5,  7.6,  7.8,  8 - Preview,  8.5  
 
Comments.     For the most part, the discussion of spherical geometry in Stillwell is 

based upon a study if the isometries of the sphere,  which are all given by  3 × 3  

orthogonal matrices.   Here are further comments on two points in Stillwell: 
 

1. In the Preview to Chapter  8  there is a statement that spherical geometry “was 
never seen as a challenge to Euclid, probably because the geometry is simply a 

part of three – dimensional Euclidean geometry, where great circles coexist with 
genuine straight lines.”   This may be partly true, but other plausible explanations 
have been given and are more widely accepted.  One of the most widely 
accepted views is that spherical geometry also does not satisfy another of 
Euclid’s axioms; namely, lines extend indefinitely in each direction such that the 
distance from a given point can be arbitrarily large (Euclid’s Second Postulate).    

In the work on non – Euclidean geometry before Riemann’s penetrating insights, 
mathematicians used the Second Postulate to exclude systems which somehow 
resembled spherical geometry.   Similarities between hyperbolic and spherical 
geometry had been noted, but only in passing and without serious efforts to 
determine if they were more than coincidental.  

 

2. In Section  7.6  the algebra of quaternions is described as “the most elegant (and 

practical) way to describe rotations’’  in the sphere or in  3 – space.   This 

certainly was true in the second half of the 19th century and it is still valid in many 
important respects, but the assertion should probably be less absolute, and a 
person who is studying such rotations for the first time might find it better to have 
an introduction which is more elementary and less algebraic in nature.   
However, at the graduate level it is necessary to understand the relationship 

between quaternions and  3 – dimensional rotations. 
 

In a less controversial direction, the exercises for  Section 8.5  of Stillwell sketch a proof 
that the area of a spherical triangle is proportional to the excess of its angle sum over 

180   degrees (Theorem  V.1.3);   Stillwell also notes that this result is (independently) 

due to the English mathematician T. Harriot (1560 – 1621).  
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V.2 : Attempts to prove Euclid's Fifth Postulate 
 

 V.3 : Neutral geometry 
 

 V.4 : Angle defects and related phenomena 
 

 V.5 : Further topics in hyperbolic geometry 

 
 
 

Suggested  readings.   
 

Stillwell :  Section  8. 9 
 

Comments.     The approaches to non – Euclidean geometry in Stillwell and the course 
notes are entirely opposite in nature.  In the course notes, the approach roughly follows 
the historical path leading to the development of hyperbolic geometry by mainly synthetic 
means.  Stillwell’s approach starts at the other end, beginning with a standard 
mathematical model for the subject which was developed near or after the final 
realization that Euclid’s Fifth Postulate could not be derived from the remaining 
assumptions (in a modern, more rigorous form)  and limiting the discussion of the 
synthetic approach to a very limited number of comments in Section  8.9.   Describing 
and working with the standard models both require a substantial amount of background 
material which include topics normally taught in a complex variables course (like 
Mathematics  165AB) and other material at an equivalent level.   On the other hand, in a 
completely synthetic approach it is at least somewhat difficult to study some basic 
phenomena in hyperbolic geometry such as the (critical) angle of parallelism and 
asymptotic parallel lines.  
 

In Section 8.9 Stillwell suggests one way of viewing the two types of hyperbolic parallel 
lines in a unified framework which reflects some observations of Saccheri:  If two lines 
are parallel but not critically parallel in hyperbolic geometry, then they have a unique 
common perpendicular; if two lines are critically parallel, then they approach each other 
asymptotically at one (common) end and one can view them as having a common 
perpendicular at infinity.     

 
 

V.6 : Subsequent developments 

 
 

Supplementary background readings.   
 

Stillwell :  Sections  5.6,  8.1 – 8.6,  8. 9 

 
Comments.   
 

The material in Section  V.6  ends with comments about standard mathematical  models 
for hyperbolic geometry, and in contrast the treatment of hyperbolic geometry in Chapter  
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8  of Stillwell begins with the construction of a model.  This model  —  the so – called   

Poincaré half – plane model  which is introduced near the beginning of Section  V.7  

in the notes   —  is different from either of the two models discussed in this section of 

the notes, and it has several advantages.   For example, several properties of the 

hyperbolic plane are particularly easy to visualize (in particular, see pp. 176 – 177  of 

Stillwell).    The definition of distances for this model is given somewhat indirectly in 
Stilwell.   If two points lie on the same vertical line, then the definition is given explicitly 

on page  193  of Stillwell, and the definition is extended to more general cases by 
means of geometrical transformations.   This extension process relies on material 

developed earlier in Chapter  8.   The file  http://cs.unm.edu/~joel/NonEuclid/model.html   

gives an explicit definition of distance for all pairs of points in the half – plane model.   

As in Stilwell’s discussion, the general definition of distance is related to concepts from 

Unit  I V  in the notes (but none of this is needed in the course).    The model for 
hyperbolic geometry which is described in this section of the notes (the Beltrami model) 

is discussed on pages  206  – 210   of Stillwell. 

 
 

V.7 : Non – Euclidean geometry in modern mathematics 

 
 

Supplementary background readings.   
 

Stillwell :  Sections  5.6,  7. 7,  7.8,  8 - Preview,  8.1 – 8.6,  8.8,  8. 9 

 
Comments.   
 

Since the role of hyperbolic geometry in modern mathematics depends heavily on 
detailed studies of the standard models, it is not surprising that the treatments in Stillwell 

and the course are much closer in this section than in Sections  V.2  – V.6.  The 

discussion below will concentrate on the references in Stillwell for various points covered 

in Section  V.7  of the notes. 
 

Stillwell’s development of the half – plane model for hyperbolic geometry, which is done 
mainly in Sections  8.1  and  8.2, gives very effective and relatively simple illustrations of 
many basic phenomena in hyperbolic geometry;  in the discussion of the preceding 
section of the course notes, we gave references for the definition of distance in  that 

model.   The Poincaré disk model for hyperbolic geometry is discussed on pages  209  

– 210  of Stillwell.    
 

One major theme in this section of the notes involves the large number of ways in which 
one can decompose the hyperbolic plane into regular polyhedra.  Such decompositions 

are discussed in Section 8.5 and pages  210  – 212  of Stillwell.  By construction these 

structures are very symmetric (just like their Euclidean counterparts), so the study of 
regular decompositions has close ties to the study of certain types of geometric 
isometries.  The latter are mentioned on the relevant pages of Stillwell, and some 
examples are also discussed in Section 8.7 of Stillwell (with some background 
information in Section 8.1). 
 


