NAME:

Mathematics 133, Fall 2013, Examination 3

INSTRUCTIONS: Work all questions, and unless indicated otherwise give reasons for your answers. If the problem does not explicitly state that the underlying plane is neutral, Euclidean or hyperbolic, then you may choose any one of these possibilities. The point values for individual problems are indicated in brackets.

$\#$	SCORE
1	
2	
3	
4	
5	
6	
7	
TOTAL	

1. [25 points] Suppose that we are given a convex quadrilateral $A B C D$ in a neutral plane such that $|\angle D A B|=90^{\circ}=|\angle B C D|$ and $d(A, B)=d(C, D)$.
(i) Prove that $|\angle A B C|=|\angle C D A|$ and $d(B, C)=d(A, D)$. [Hint: First split the quadrilateral into two triangles along diagonal $[B D]$, then do the same thing along diagonal [AC].]
(ii) Explain why the quadrilateral is a rectangle if and only if the plane is Euclidean.

SOLUTION

(i) By HS for right triangles we have $\triangle D A B \cong \triangle B C D$. Therefore $d(B, C)=d(A, D)$. Next by SSS we have $\triangle A B C \cong \triangle C D A$. Therefore $|\angle A B C|=|\angle C D A| . ■$
(ii) The angle sum of the convex quadrilateral is equal to

$$
180^{\circ}+2 \cdot|\angle A B C|=180^{\circ}+|\angle A B C|+|\angle C D A|=180^{\circ}+2 \cdot|\angle C D A|
$$

and by a corollary to the Saccheri-Legendre Theorem this sum is $\leq 360^{\circ}$. If the convex quadrilateral is a rectangle, then it follows that the plane is Euclidean. Conversely, if the plane is Euclidean, then the angle sum of the convex quadrilateral is equal to 360°, and by the formulas in the first sentence this implies that $|\angle A B C|=|\angle C D A|=90^{\circ}$, so that the convex quadrilateral is a rectangle.
2. [20 points] Suppose we are given a hyperbolic plane \mathbf{P} and a small real number $h>0$. Prove that there is a triangle $\triangle A B C$ in \mathbf{P} whose angle defect $\delta(\Delta A B C)$ is less than h. [Hint: If we are given $\triangle D E F$ and $G \in(E F)$, why is at least one of $\{\delta(\Delta D E G), \delta(\Delta D G F)\}$ less than or equal to $\frac{1}{2} \delta(\Delta D E F) ?$]

SOLUTION

We know that $\delta(\Delta D E F)=\{\delta(\Delta D E G)+\delta(\Delta D G F)\}$. Given three positive real numbers a, b, c such that $a+b=c$, we have either $a \leq \frac{1}{2} c$ or $b \leq \frac{1}{2} c$ for otherwise we would have $a>\frac{1}{2} c$ and $b>\frac{1}{2} c$, which would imply that $a+b>c$. Combining these, we see that the assertion in the hint - namely, at least of $\{\delta(\Delta D E G), \delta(\Delta D G F)\}$ is less than or equal to $\frac{1}{2} \delta(\triangle D E F)$ - must be true.

We can reformulate the preceding to state that given $\triangle D E F$ there is some triangle $\Delta D_{1} E_{1} F_{1}$ such that $\delta\left(\Delta D_{1} E_{1} F_{1}\right) \leq \frac{1}{2} \delta(\triangle D E F)$. Repeating this argument n times for an arbitrary positive integer n we obtain a triangle $\Delta D_{n} E_{n} F_{n}$ such that $\delta\left(\Delta D_{n} E_{n} F_{n}\right) \leq$ $\left(\frac{1}{2}\right)^{n} \delta(\Delta D E F)$. If $h>0$ then we know that there is some value of n such that the right hand side is less than h, and for this choice of n we have $\Delta D_{n} E_{n} F_{n}$ such that $\delta\left(\Delta D_{n} E_{n} F_{n}\right)<h$.
3. [15 points] Assume that everything in this exercise lies in some Euclidean plane.
(i) Define the orthocenter of $\triangle A B C$.
(ii) State the Two Circle Theorem.

SOLUTION

(i) This is the point where the altitudes (perpendiculars from A to $B C, B$ to $A C$ and C to $A B$) meet.
(ii) Let Γ_{1} and Γ_{2} be two circles with centers Q_{1} and Q_{2} respectively. If Γ_{2} contains a point in the interior of Γ_{1} and a point in the exterior of Γ_{1}, then $\Gamma_{1} \cap \Gamma_{2}$ consists of exactly two points, with one on each side of the line $Q_{1} Q_{2}$ joining their centers.■
4. [20 points] Suppose that we are given four lines $L_{1}, L_{2}, M_{1}, M_{2}$ in a Euclidean plane such that $L_{1} \perp M_{1}, L_{2} \perp M_{2}$, and L_{1} meets L_{2} at some point X. Prove that the lines M_{1} and M_{2} have a point in common. You may use the following theorems: (1) If M and N are parallel lines and $K \perp M$, then $K \perp N$. (2) Two lines perpendicular to a third line are parallel.

SOLUTION

Suppose that the conclusion is false, so that $M_{1} \| M_{2}$. By $L_{1} \perp M_{1}$ and the first theorem stated in the problem, this means that $L_{1} \perp M_{2}$. If we combine this with $L_{2} \perp M_{2}$ and the second theorem, we conclude that $L_{1} \| L_{2}$. But this contradicts our hypothesis that $L_{1} \perp L_{2}$, and thus our assumption that $M_{1} \cap M_{2}=\emptyset$ must be false, which means that M_{1} and M_{2} have a point in common. -
5. [25 points] Suppose that we are given $\triangle A B C \sim \triangle A E F$ in the standard Euclidean coordinate plane, where $E \in(A B)$ and $F \in(A C)$.
(i) Vector formulas for E and F are given by $E=A+s(B-A)$ and $F=A+t(C-A)$ where $0<s, t<1$. Explain why $s=t$.
(ii) Prove that the lines $E F$ and $B C$ are parallel. You may use the fact that neither E nor F lies on $B C$.

SOLUTION

(i) Let k be the ratio of similitude. Then we have

$$
\begin{aligned}
k & =\frac{|E-A|}{|B-A|}=\frac{s|B-A|}{|B-A|}=s \\
k & =\frac{|F-A|}{|C-A|}=\frac{t|C-A|}{|C-A|}=t
\end{aligned}
$$

and if we combine these equations we see that $s=k=t$.
(ii) By the conclusion to the first part we have

$$
E-F=(E-A)-(F-A) k(C-A)-k(B-A)=k(C-B)
$$

where $k \neq 0$ is the ratio of similitude, and since $E-F$ is a nonzero multiple of $C-B$ the lines $E F$ and $B C$ must be parallel..
6. [20 points] (i) Suppose we are given $\angle B A C$ and a point $D \in(B C)$. Explain why D lies in the interior of $\angle B A C$.
(ii) Let $A \neq B$ be points, and let $f: A B \rightarrow \mathbf{R}$ be a $1-1$ correspondence such that $d(X, Y)=|f(X)-f(Y)|$ for all points X, Y on the line $A B$ and $f(A)>f(B)$. If C is a third point on $A B$, state the inequality or inequalities corresponding to the (separate) statements $A * C * B$ and $A * B * C$.

SOLUTION

(i) The ordering relation $B * D * C$ and basic theorems on betweenness and separation imply that (a) B and D lie on the same side of $A C,(b) C$ and D lie on the same side of $A B$. Since the interior of $\angle B A C$ is the set of all points on the same side of $A B$ as C and also on the same side of $A C$ as B, this means that D lies in the interior of $\angle A B C . ■$
(ii) $A * C * B$ corresponds to the inequality chain $f(A)>f(C)>f(B)$, and $A * B * C$ corresponds to the inequality $f(B)>f(C)$.
7. [25 points] In a Euclidean plane, a representative pair of noncongruent triangles satisfying SSA are given by $\triangle A B C$ and $\triangle A B D$ where $B * C * D$ and $d(A, C)=d(A, D)$. Determine the value of the following expression involving the angles with unequal measures:

$$
|\angle D A B|-|\angle C A B|+2|\angle A D B|
$$

SOLUTION

To simplify the algebra we shall write the various angle measures as follows:

$$
\begin{aligned}
& |\angle A B C=\angle A B D|=\beta,|\angle A D C=\angle A D B|=\delta \\
& |\angle B A C|=\alpha_{1},|\angle C A D|=\alpha_{2} \\
& |\angle A C B|=\gamma_{1},|\angle A C D|=\gamma_{2}
\end{aligned}
$$

There is a drawing on the next page.
The betweenness relation $B * C * D$ implies that C lies in the interior of $\angle B A D$, and therefore by the Addition Postulate for angle measures we have $|\angle B A D|=\alpha_{1}+\alpha_{2}$. Furthermore, the Supplement Postulate implies that $180^{\circ}=\gamma_{1}+\gamma_{2}$. Finally, the Isosceles Triangle Theorem implies that $\gamma_{2}=\delta$.

Since the angle sum of a Euclidean triangle is 180°, we also have
$\alpha_{1}+\alpha_{2}+\beta+\delta=180^{\circ}, \alpha_{1}+\beta+\gamma_{1}=180^{\circ}, \alpha_{2}+\delta+\gamma_{2}=180^{\circ}$
and therefore the expression in the problem is equal to

$$
\left(\alpha_{1}+\alpha_{2}\right)-\alpha_{1}+2 \delta=\alpha_{2}+2 \delta=\alpha_{2}+\delta+\gamma_{2}=180^{\circ}
$$

so the expression in the problem is equal to 180°.

ADDITIONAL BLANK PAGE FOR USE IF NEEDED

Drawing to accompany the solution to Problem 7

Note on triangles satisfying the SSA criterion

As the wording of Problem 7 suggest, if $\triangle A B C$ and $\triangle X Y Z$ (with the associated vertex orderings) satisfy the SSA criteria $d(A, B)=d(X, Y), d(A, C)=d(X, Z),|\angle A B C|=|\angle X Y Z|$, and in addition $|\angle X Y Z|$ is NOT a right angle (so we avoid issues involving the HS congruence theorem for right triangles), then either $\triangle A B C \cong \triangle X Y Z$ or $\triangle A B D \cong \triangle X Y Z . \quad$ One can view this as part of a standard problem in trigonometry; namely, given real numbers \boldsymbol{b} and \mathbf{c} along with an angle measure β, determine the remaining measurements of all triangles $\triangle A B C$ such that $d(A, B)=c, d(A, C)=$ b, and $|\angle A B C|=\beta$. If $\angle A B C$ is an acute angle, then there are $\mathbf{0}, \mathbf{1}$ or $\mathbf{2}$ possibilities for the remaining measurements depending upon whether b is less than, equal to, or greater than $c \sin \beta$, and in this case the setting of the exercise presents both possibilities for the third case. Several of the online references below provide further information about these cases. On the other hand, if $\angle A B C$ is either a right or obtuse angle, then there is at most one possibility for the remaining measurements, and such a triangle exists if and only if \boldsymbol{b} is greater than \boldsymbol{c} (see the drawing below).

One way of seeing the uniqueness of such triangles is to use Corollary III.3.2 in the notes. If one could find a second point \boldsymbol{D} on ($\boldsymbol{B C}$ such that, say, $\boldsymbol{B} * \boldsymbol{C} * \boldsymbol{D}$ and $\boldsymbol{d}(\boldsymbol{A}, \boldsymbol{D})=\boldsymbol{d}(\boldsymbol{A}, \boldsymbol{C})$, then $\angle A D B$ and $\angle A C B$ would be an acute angles by that result, and by the Isosceles Triangle Theorem the same would hold for $\angle A C D$. But this is impossible because $\angle A C D$ and $\angle A C B$ are supplementary.

Finally, here are some online references concerning noncongruent triangles satisfying SSA:
http://www.regentsprep.org/Regents/math/algtrig/ATT12/lawofsinesAmbiguous.htm
http://www.ehow.com/how 8680797 solve-triangles-ambiguous-case.html
http://teachers.henrico.k12.va.us/math/ito_08/10AdditionalTrig/10les1/ambiguous_act.pdf
http://mathforum.org/mathimages/index.php/Ambiguous_Case
http://www.algebra.com/algebra/homework/Trigonometry-basics/change-this-name8950.lesson

