\qquad

Mathematics 133, Fall 2018, Examination 1

Work all questions, and unless indicated otherwise give reasons for your answers. The point values for individual problems are indicated in brackets.

$\#$	SCORE
1	
2	
3	
4	
TOTAL	

1. [25 points] Let a and b be real numbers with $a= \pm 1$. Verify that the map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ is distance preserving: $|f(x)-f(y)|=|x-y|$ for all real numbers x and y.
2. [25 points] Let $x,, y, z, w$ be noncoplanar points in 3 -space (hence no three are collinear). Show that the lines $x y$ and $z w$ have no points in common but are not coplanar.
3. [25 points] Let a, b, c, d, e be points in the plane such that $a * b * c$ and $a * d * e$. Using Pasch's Theorem for triangle acd, show that the open segments ($c d$) and (be) have a point in common. [Hint: Consider the line $e b$. Why does it not contain any points of [ad]? A rough sketch should provide some insight.]
4. [25 points] Suppose we are given isosceles triangle $A B C$ in the plane with $|A B|=$ $|A C|$, and let D be the midpoint of $[B C]$. Prove that the ray bisects $\angle B A C:|\angle B A D|=$ $|\angle D A C|=\frac{1}{2}|\angle B A C|$. You may assume D lies in the interior of $\angle B A C$ without proving this fact.

Extra page for use if needed

