Mathematics 133, Fall 2018, Examination 1

Answer Key

1. [25 points] Let a and b be real numbers with $a= \pm 1$. Verify that the map $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ is distance preserving: $|f(x)-f(y)|=|x-y|$ for all real numbers x and y.

SOLUTION

Write out the left hand side and show that it reduces to the right hand side:

$$
|f(x)-f(y)|=|(a x+b)-(a y+b)|=|a x-a y|=|a| \cdot|x-y|
$$

Since $a= \pm 1$ we have $|a|=1$ and hence the right hand side is equal to $|x-y|$, and this proves the assertion in the problem.
2. [25 points] Let x, y, z, w be noncoplanar points in 3 -space (hence no three are collinear). Show that the lines $x y$ and $z w$ have no points in common but are not coplanar.

SOLUTION

The lines are not coplanar, for if they were then a plane containing both of them would contain x, y, z, w. If the lines $x y$ and $z w$ had some point(s) in common then they would be contained in some plane, and this cannot happen by the preceding sentence.
3. [25 points] Let a, b, c, d, e be points in the plane such that $a b \neq a d, a * b * c$ and $a * d * e$. Using Pasch's Theorem for triangle $a c d$, show that the open segments ($c d$) and (be) have a point in common. [Hint: Consider the line eb. Why does it not contain any points of [ad]? A rough sketch should provide some insight.]

SOLUTION

We shall use the suggestions in the hint, and we shall verify that the four lines are distinct after completing the solution,

Since be meets open edge ($a c$) in a point, Pasch's Theorem implies that the line $e b$ contains a point from one of the sets $(a d),\{d\}$ or $(c d)$. It cannot contain a point from either of the first two sets, for the lines be and $a d=a e$ are distinct and meet at e, which is not in either ($a d$) or $\{d\}$. Therefore be and ($c d$) must have a point x in common.

If we switch the roles of (b, d) and (c, e) in the preceding argument, we also see that $c d$ and ($b e$) must have a point y in common. Now $c d \neq b e$, for if they were the same line L then b, c, d, e would all lie on L, and this would mean that $a \in L$ as well. But $c d \neq b e$ and hence these lines have at most one point in common. Therefore $x=y$. By the preceding discussion we know that this point lies on both (cd) and (be)..

PROOF THAT THE FOUR LINES ARE DISTINCT

By construction we know that $a b \neq a d$. Also, $b e$ is equal to neither of these lines because it meets the first one at $b \neq a$ and the second one at $e \neq a$. Similarly we know that $c d$ is equal to neither $a b$ or $a d$. The only remaining possibility is that $c d=b e$. This can also be eliminated because $c d$ meets $a b$ in c while be meets $a b$ in b, and the points b and c are distinct by construction; if $c d=b e$, then there would be a single point where this line met $a b$.
4. [25 points] Suppose we are given isosceles triangle $A B C$ in the plane with $|A B|=|A C|$, and let D be the midpoint of $[B C]$. Prove that the ray $[A D$ bisects $\angle B A C$: $|\angle B A D|=|\angle D A C|=\frac{1}{2}|\angle B A C|$. You may assume D lies in the interior of $\angle B A C$ without proving this fact.

SOLUTION

By definition of the midpoint, we have $|B D|=|D C|$. Therefore by the SSS congruence axiom we know that $\triangle A D C \cong \triangle B D C$, so that $|\angle B A D|=|\angle C A D|$. Call this value q.

Since D is the midpoint of $[B C]$ we have $B * D * C$, so that D lies in the interior of $\angle B A C$. Therefore the additivity axiom implies that

$$
|\angle B A C|=|\angle B A D|+|\angle C A D|=q+q=2 q .
$$

Combining these observations we see that $|\angle B A D|=|\angle C A D|=q=\frac{1}{2}|\angle B A C| \cdot ■$

