Alternate solution for problem 3

This problem can be solved using the Plane Separation Postulate rather than Pasch's Theorem as follows: By $a * b * c$ and $a * d * e$ we know that a and b are on the same sice of $c d$ while a and e are on opposite sides of $c d$. Therefore b and e are on opposite sides of $c d$ and hence there is a point $x \in(b e) \cap c d$. If we switch the roles of b and c with those of d and e, we see that there is a point $y \in(c d) \cap b e$. Now the lines $c d$ and $b e$ have only one point in common (they are distinct), and since both x and y lie on the two lines we must have $x=y$. But this means that $x=y$ lies on each of the segments (be) and (cd).

