Mathematics 133, Fall 2018, Examination 2

Answer Key

1. [25 points] Suppose that $\triangle A B C$ is a right triangle with a right angle at B such that $|A B|=15,|B C|=20$ and $|A C|=25$. Choose $D \in(A C)$ so that $|A D|=10$ and $|B C|=15$, and let $E \in(B C)$ be such that $D E \perp A C$ (one can show that such a point exists, but it is not necessary to do so here). Find the numerical value of $x=|D E|$. NOTE: There is a drawing for this problem on the last page.

SOLUTION

We know that $\angle D C E=\angle B C A *$ as sets $*$ (hence their angle measures are equal) and $|\angle E D C|=90^{\circ}=|\angle A B C|$. Therefore $\triangle E D C \sim \triangle A B C$ by AA similarity. This yields the proportionality relation

$$
\frac{|E D|}{|A B|}=\frac{|D C|}{|B C|}
$$

If we substitute the values for the lengths of the various segments we find that

$$
\frac{x}{15}=\frac{15}{20}=\frac{3}{4}
$$

so that $4 x=45$ or $x=45 / 4 .$.
2. [25 points] Let $\triangle A B C$ be an isosceles right triangle with vertices $A=(-1,0)$, $B=(0,1)$ and $C=(1,0)$. Find the circumcenter, orthocenter and centroid for $\triangle A B C$, and describe the line which contains all three of these points.

Extra credit 5 points. Explain why this line also contains the incenter of the triangle.

SOLUTION

Since we have an isosceles right triangle the ortheocenter is at the right angle vertex, which is $(0,1)$, and the circumcenter is the midpoint of the hypotenuse, which is $(0,0)$. Finally, the centroid is just $\frac{1}{3} \cdot((-1,0)+(0,1)+(1,0))=(0,1 / 3)$.

For the second part, the incenter lies on the angle bisector, which in this case is just the y-axis, and we have seen that this line contains the other three concurrency points.
3. [20 points] Assume we are working in neutral plane geometry, and let A, B, C, D be the vertices of a Saccheri quadrilateral with $A B \perp B C \perp C D$ and $|A B|=|C D|$. If the lengths of the remaining two sides satisfy $|B C|=|A D|$, prove that this quadrilateral is a rectangle.

SOLUTION

The hypothesis on lengths implies that $\triangle B A D \cong \triangle D C B$ and $\triangle A D C \cong \triangle C B A$ by SSS congruence. These congruences yield $90^{\circ}=|\angle D C B|=|\angle B A D|$ and $90^{\circ}=|\angle C B A|=$ $|\angle A D C|$. Therefore all four vertex angles for the quadrilateral are right angles and hence the quadrilateral is a rectangle..
4. [30 points] Assume we are working in hyperbolic plane geometry and we are given an equilateral triangle $\triangle A B C$ (so $|A B|=|A C|=|B C|$). Let D and E be points such that $A * B * D, A * C * E$, and $|A D|=2|A B|=2|A C|=|A E|$ (hence $\triangle A D E$ is isosceles). Prove that $|\angle A D E|<|\angle A B C|$ and $|\angle A E D|<|\angle A C B|$. Why does this imply that $\triangle A D E$ is not equilateral? [Hint: Compute angle defects for the relevant triangles, and recall that equilateral \Leftrightarrow equiangular).]

SOLUTION

Since the first triangle is isosceles we know that the measures for all three of its vertex angles are equal to some value, say α. We also know that $\triangle A D E$ is isosceles, so that $|\angle A D E|=|\angle A E D|=\beta$ for some β. Therefore the angle defects of the two triangles satisfy

$$
180^{\circ}-3 \alpha=\delta(\triangle A B C), \quad 180^{\circ}-\alpha-2 \beta=\delta(\triangle A D E)
$$

But we also have $\delta(\triangle A B C)<\delta(\triangle A D C)<\delta(\triangle A D E)$ by the additivity of the angle defect. Combining the conclusions in the preceding two sentences we find that $180^{\circ}-3 \alpha<$ $180^{\circ}-\alpha-2 \beta$, which reduces to $\beta<\alpha$.

Since $\angle D A E=\angle B A C$ *as sets*, the measures of the vertex angles for $\triangle A D E$ are α, β, β. Since equilateral \Leftrightarrow equiangular holds for triangles in neutral geometry, it follows that $\triangle A D E$ cannot be equilateral. -

