NAME:

Mathematics 133, Winter 2009, Examination 2

Answer Key

1. [15 points] Suppose that the points A, B and C have coordinates $(1,1),(0,0)$ and $(2,1)$ respectively. Using barycentric coordinates, show that $(4,3)$ lies in the interior of $\angle A B C$.

SOLUTION.

To find the barycentric coordinates of $(4,3)$ we first need to solve the equation

$$
(4,3)-B=u(A-B)+w(C-B)
$$

for u and w. Since $B=\mathbf{0}$, this equation is just

$$
(4,3)=u(1,1)+w(2,1)
$$

and if we solve for u and w we obtain $w=1$ and $u=2$. The third barycentric coordinate is given by $v=1-u-w=1-3=-2$, but we really do not need this because the conditions $u, w>0$ already imply that $(4,3)$ lies in the interior of $\angle A B C$.
2. [20 points] Suppose that we are given $\angle A B C$ and $\angle D E F$ such that $|\angle A B C|=$ $|\angle D E F|$, and let $G \in \operatorname{Int} \angle A B C$ and $H \in \operatorname{Int} \angle D E F$ be such that $|\angle A B G|=|\angle D E H|$. Prove that $|\angle C B G|=|\angle F E H|$.

SOLUTION.

The Additivity Postulate implies the equations

$$
|\angle A B C|=|\angle A B G|+|\angle C B G|, \quad|\angle D E F|=|\angle D E H|+|\angle H E F|
$$

and we can rewrite these in the following forms:

$$
|\angle A B C|-|\angle A B G|=|\angle C B G|, \quad|\angle D E F|-|\angle D E H|=|\angle H E F|
$$

By our assumptions the left hand sides of both equations are equal, and therefore the right hand sides must also be equal.
3. [20 points] Suppose that we are given a triangle $\triangle A B C$ and $D \in(B C)$ such that $d(B, A)=d(B, D)$. If $|\angle A B C|=50^{\circ}$ and $|\angle A C B|=30^{\circ}$, find $|\angle A D C|$. [Hint: Drawing a picture is probably worthwhile.]

SOLUTION. By the Supplement Postulate we know that $|\angle A D C|+|\angle A D B|=180^{\circ}$, so if we can find $\mid \angle A D B$ then we can find $|\angle A D C|$. Since $\triangle A D B$ is isosceles with legs $[B D]$ and $[B A]$, it follows that

$$
180^{\circ}=|\angle A B C|+2|\angle A D B|=50^{\circ}+2|\angle A D B|
$$

so that $|\angle A D B|=65^{\circ}$. If we substitute this into the original equation, we find that $|\angle A D C|=180^{\circ}-65^{\circ}=115^{\circ}$.
4. [15 points] Given an ordered list four coplanar points A, B, C, D such that no three are collinear, state the conditions for these points (in the given order) to be the vertices of a convex quadrilateral.

SOLUTION.

If (A, B, C, D) is the ordered list of four points, then the conditions are that
(i) A and B lie on the same side of $C D$,
(ii) B and C lie on the same side of $D A$, (iii) C and D lie on the same side of $A B$,
(iv) D and A lie on the same side of $B C$.
5. [10 points] Let L be the line in \mathbb{R}^{3} which contains the points $(1,2,3)$ and $(4,5,6)$, and let M be the line through $(2,1,3)$ which is parallel to L. Find a second point on M.

SOLUTION.

The line L may be written as $(1,2,3)+W$, where W is spanned by the difference $(4,5,6)-(1,2,3)=(3,3,3)$. Therefore W is the set of all vectors of the form (t, t, t) for some real number t. It follows that the line M may be written as $(2,1,3)+W$, and consequently the second point can be any point of the form $(2+t, 1+t, 3+t)$, where $t \neq 0$.
6. [20 points] Suppose that we are given $\triangle A B C$ such that $d(A, B)=8$ and $d(B, C)=17$, and we know that $d(A, C)$ is an integer which is a perfect square. Use the Triangle Inequality to show that $d(A, C)$ must be equal to 16 .

SOLUTION.

The Triangle Inequality implies that

$$
17=d(B, C)<d(B, A)+d(A, C)<8+d(A, C)
$$

so that $d(A, C)>9$ and also

$$
d(A, C)<d(A, B)+d(B, C)=8+17=25
$$

so that $d(A, C)<25$. Sine the only perfect square between 9 and 25 is 16 , it follows that $d(A, C)=16$.

