
Comments on two problems from 
 

Mathematics 133, Winter 2009, Examination 3 

 
2.   Here is a drawing for the problem: 
 

 
 

Further discussion.  The conclusion of the exercise remains valid regardless of where 
the feet of the perpendiculars lie, but not surprisingly this takes additional work.  For the 
sake of completeness, we shall describe how one can prove the more general result 

using material introduced up to and including Section I I I.5.   
 

Before doing so, we note that the general conclusion follows very quickly if we use the 
formula for the altitude derived in the proof of Heron’s formula (see the proof of Theorem  

I I I.7.6).  Alternatively, one can use the familiar formula  Area  =  ½ (base)(height) 
and the fact (not shown in the notes) that if two triangles are similar with ratio of 

similitude k, then the ratio of the areas for the closed regions bounded by these triangles 

is equal to k
2
. 

 

The discussion splits into five cases, depending upon where the foot G of the 
perpendicular from A to BC is situated with respect to B and C.  As indicated in the 

drawing below, the possibilities are  G∗B∗C,  G = B,  B∗G∗C,  G = C, and  B∗C∗G. 
 

 
 

Of course, if we are given another triangle ����DEF and H is the foot of the perpendicular 
from D to EF, there are five analogous possibilities, and a crucial step is to show that for 

each possible case for ����ABC there is a unique corresponding case for ����DEF.  Here is 
a formal statement of what is true: 



CLAIM.  Suppose that ����ABC ~ ����DEF, and let G and H be the feet of the 

perpendiculars from A to BC and from D to EF.  Then we have the following: 

1. If  G∗B∗C is true, then  H∗E∗F is true. 
 

2. If  G = B, then  H = E. 
 

3. If  B∗G∗C is true, then  E∗H∗F is true.  
 

4. If  G = C, then  H = F. 
 

5. If  B∗C∗G is true, then  E∗F∗H is true. 
 

One can show this by applying the Exterior Angle Theorem systematically.  The first 

possibility occurs if and only if ∠∠∠∠ABC is obtuse, the second if and only if ∠∠∠∠ABC is a right 

angle, the third if and only if both ∠∠∠∠ABC and ∠∠∠∠ACB are acute, the fourth if and only if 

∠∠∠∠ACB is a right angle, and the fifth if and only if ∠∠∠∠ACB is obtuse.  The similarity of the 

two triangles implies that  | ∠∠∠∠ABC |  =  | ∠∠∠∠DEF |  and  | ∠∠∠∠ACB |  =  | ∠∠∠∠DFE |, and thus in 
each of the cases the ordering relationship among B, C and G yields the corresponding 
ordering relationship among D, E and H.  
 

In particular, the third case is assumed to hold in the exercise, and we see that it is 
enough to assume just one of the ordering relationships because the other can be 
derived from it as in the preceding discussion.  Note also that in the second and fourth 
cases the conclusion of the exercise follows immediately from the definition of similar 
triangles.  Finally, we note that the fifth case can be handled by the same argument 
which we employed to dispose of the third case, and we can retrieve the first case from 
the fifth case by interchanging the roles of B and C and of E and F in the argument. 
 

4.   Here is a drawing for this problem: 
 

 
 

In this picture, the base angles of the isosceles triangles ����ABC and ����ADE are marked 
in green and purple respectively; by the Isosceles Triangle Theorem, the measures of 
the base angles marked with the same color are equal.  Repeated applications of 

Proposition V.4.4 in the notes imply that 
 

δδδδ(����ADE)  =  δδδδ(����ABE)  +  δδδδ(����EBD),                        δδδδ(����ABE)  =  δδδδ(����EBD)  +  δδδδ(����ABC)        



which in turn leads to the inequalities 
    

δδδδ(����ABC)   <   δδδδ(����ABE)  <  δδδδ(����ADE) 
 

and as indicated in the answer key for the examination this chain of inequalities implies 

that  |∠∠∠∠ADE |  <   |∠∠∠∠ABC |. 
 
Of course, the situation in Euclidean geometry is entirely different, for in that case we 

know that ����BAC ~ ����DAE  by the SAS Similarity Theorem, and therefore we have  

|∠∠∠∠ADE |  =   |∠∠∠∠ABC |. 
 
 


