
EXTREME POINTS AND AFFINE EQUIVALENCE

The purpose of this note is to use the notions of extreme points and affine transformations
— which are studied in the file affine-convex.pdf — to prove that certain standard geometrical
figures are not affine equivalent (and a fortiori not congruent). In particular, these results imply
that a triangle and a convex quadrilateral cannot be affine equivalent and hence cannot be congru-
ent. On the intuitive level, the conclusions are fairly self-evident; however, the proofs yield more
general insights into the geometric properties of figures and into criteria for determining whether
more general pairs of subsets are congruent or affine equivalent.

Needless to say, we shall use material from affine-convex.pdf as needed.

Definition. Let n ≥ 3, and let V = {A1, ... , An} be a linearly ordered set of points in R
2 such

that no three are collinear; for the sake of notational convenience we shall also denote An by A0.
We shall say that the broken line curve ΓV defined by

[A1A2] ∪ [A2A3] ∪ ... ∪ [AnA1]

is a convex polygon if for every k such that 0 ≤ k < n all points in V −{Ak, Ak+1
} lie on the same

open half-plane determined by the line AkAk+1. The elements of V are called the vertices of ΓV .

Reminder. If L ⊂ R
2 is a line defined by the linear equation g = 0, then (i) the two open

half-spaces determined by L are the sets determined by the strict inequalities g > 0 and g < 0, (ii)
the two closed half-spaces determined by L are the sets determined i by the non-strict inequalities
g ≥ 0 and g ≤ 0.

If the number of vertices is unknown or unimportant, we shall often simply say that ΓV is a
convex polygon.

Remarks.

1. If n = 3 then the condition is true for all choices of V , and the resulting curve is just a
triangle. If n = 4 the defining condition is satisfied if V is the set of vertices for the unit square
[0, 1]× [0, 1], but it is not satisfied if V is the set whose elements are (0, 1), (0, 0), (1, 0) and

(

1
3 , 1

3

)

.

2. For certain small values of n (say, less than 100) we often use the standard words to
describe n-gons (e.g., quadrilateral, pentagon, hexagon, octagon, decagon, etc.).

3. The definition itself does not address the question of whether the underlying set of points
can also be written in the form

ΓW = [B1B2] ∪ [B2B3] ∪ ... ∪ [BmB1]

for a second set of linearly ordered vertices W = {B1, ... , Bm}. In this note we shall only need
to know that the underlying unordered sets are the same. An elementary but somewhat tedious
argument also shows that the ordering is unique up to permutations of {1, ... , n} generated by the
cyclic permutation (k → k + 1 for k < n and n → 1) and the order-reversing permutation sending
k to n + 1 − k for all k, but we shall not prove or use this.

4. The results of affine-convex.pdf imply that if F is an affine transformation and ΓV is
a convex polygon, then F [ΓV ] is the convex polygon ΓF [V ]. — Specifically, the results of affine-

convex.pdf show that (i) if V = {A1, ... , An} is a linearly ordered set of points in R
2 such that

no three are collinear then so is F [V ], (ii) if all the points in V − {Ak, Ak+1} are on the same side
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of AkAk+1 then all the points in F [V − {Ak, Ak+1}] are on the same side of F (Ak)F (Ak+1), (iii)
an affine transformation sends the closed segment joining X and Y to the closed segment joining
F (X) and F (Y ).

5. It is important to notice that a convex polygon is NOT a convex set. For example, if
X is the midpoint of [A2A3] and Y is the midpoint of [A1X], then Y 6∈ ΓV . This is immediately
apparent from a simple drawing when n = 3 (see Figure 1 at the end of this file), but for the sake
of completeness we shall give a rigorous proof (which may be skipped without loss of continuity).

PROOF. Assume that Y ∈ ΓV and in particular that Y ∈ [AkAk+1], where 0 ≤ k < n.
First of all, observe that k 6= 1, for if this were true then Y ∈ A1A2 would imply that
A1X = A1Y = A1A2, so that {A1, A2, X} is collinear; since {A2, A3, X} is collinear by
construction, this implies that A3 ∈ A1A2, which contradicts our assumption that no three
vertices are collinear. This shows that k 6= 1. — Next, k = 0 would imply that {An, Y, A1}
is collinear, which in turn implies that X ∈ [AnA1]; since X is the midpoint of [A2A3]
and no three vertices are collinear, it would follow that A2A3 6= AnA1 and hence A2 and
A3 lie on opposite sides of AnA1, contradicting our basic assumption about the vertices.
Therefore we also have k 6= 0. — Similarly, k = 2 would imply that {Y,A2, A3} is collinear,
and since X ∈ (A2A3) this line also contains X. We can now use A1 ∗ Y ∗ X to conclude
that A1 ∈ A2A3, again contradicting our basic assumption about the vertices, and thus
we further have k 6= 2. — Finally, if n ≥ 4 we need to exclude the cases where 3 ≤ k < n.
In this case Y ∈ AkAk+1 would imply that A1 and X lie on opposite sides of AkAk+1, and
X ∈ (A2A3) implies that X and A2 lie on the same side of AkAk+1 (regardless of whether
or not k = 3). Combining these, we find that A1 and A2 lie on opposite sides of AkAk+1,
once again contradicting our basic assumption about the vertices, and thus showing that
Y 6∈ [AkAk+1] the remaining values of k.

Extreme points of regular polygons

The notion of extreme point is meaningful for an arbitrary subset S of R
n (i.e., the point is

not between two other points of S). Then as in affine-convex.pdf we can conclude that if F is
an affine transformation of R

n and S ⊂ R
n, then F sends extreme points of S to extreme points of

F [S].

We can now state the main results.

THEOREM 1. If V is the ordered set of vertices for the convex polygon ΓV , then V is the set
of extreme points for ΓV .

COROLLARY 2. A convex m-gon and a convex n-gon cannot be affine equivalent (and hence
cannot be congruent) if m 6= n.

Proof that Theorem 1 implies Corollary 2. The theorem implies that if ΓV and ΓW are
convex n- and m-gons respectively, then their extreme points are V and W respectively. Therefore
if F is an affine transformation mapping ΓV to ΓW , then F sends V to W by the earlier remark
on extreme points and affine transformations. But this means that V and W must have the same
numbers of elements, sot htat n = m.

The following observation plays a key role in the proof of Theorem 1:

LEMMA 3. Let n ≥ 3, and let V = {A1, ... , An} be the linearly ordered vertices of a
convex n-gon ΓV (as usual, take A0 = An). Then for each k such that 0 ≤ k < n we have
AkAk+1 ∩ ΓV = [AkAk+1].
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Proof of Lemma 3. Let g be a linear function whose zero set is the line AkAk+1; multiplying g

by −1 if necessary, we may assume that g(Ak+2) > 0, where we let An+1 = A1 when k = n− 1. It
follows immediately that g(Ai) > 0 for all i 6= k, k +1 (since all these points lie on the same side of
AkAk+1), and it will suffice to verify that g is positive on each open interval (AjAj+1) for j 6= k.

Suppose now that X ∈ (AjAj+1) for some j 6= k, so that X = sAj + tAj+1 where s, t > 0 and
s + t = 1. Since j 6= k at least one of g(Aj) and g(Aj+1) must be positive; in any case we know
that both are nonnegative. These imply that

g(X) = s · g(Aj) + t · (Aj+1) > 0

so that X does not lie on AkAk+1. By construction none of the vertices Aj (where j 6= k) lie on
the latter line, and thus the only points in AkAk+1 ∩ ΓV are the points in [AkAk+1].

Proof of Theorem 1. First of all, we claim that the set of extreme points is contained in the
set V of vertices, for each point in an open edge (AkAk+1) lies between the vertices Ak and Ak+1.
Therefore it remains to prove that every vertex is an extreme point.

Let Ak be a typical vertex, and let g be the linear function described in Lemma 3 for the line
AkAk+1. Observe that g is nonnegative on the vertices, and therefore on each closed edge [AjAj+1]
the linear function g is nonnegative.

If we have Ak = sY + tZ for some Y,Z ∈ ΓV where s, t > 0 and s+ t = 1, then the observation
in the preceding paragraph implies that

0 = g(Ak) = s · g(Y ) + t · g(Z)

and since g(Y ), g(Z) 6= 0 this can only happen if g(Y ) = g(Z) = 0; i.e., both Y and Z must lie on
the line AkAk+1, and by Lemma 3 these points actually lie on the closed segment [AkAk+1]. Since
Ak is not between two points on this closed segment, it follows that Y and Z cannot exist, and
hence Ak must be an extreme point of ΓV .

Solid polygonal regions

We shall now prove a similar result for the interior regions of convex polygons. Still using
the same notation as before, let gk be the linear function such that its zero set is the line AkAk+1

and gk is positive on all the vertices except Ak and Ak+1. Then we may define the solid or closed
interior region of ΓV to be the set of points X such that gk(X) ≥ 0 for all k. If we let Gj denote
the closed half-plane on which gj is nonnegative (where 0 ≤ j < n), then S is just the intersection
∩j Gj .

The results of affine-convex.pdf now imply that an affine transformation F sends the solid
interior region for ΓV into the solid interior region for ΓF [V ] (compare Remark 4 following the
definition of a convex polygon). This in turn leads to the following result:

THEOREM 4. In the preceding notation, let S denote the solid polygonal region determined
by the convex polygon ΓV . Then V is the set of extreme points for S.

This leads immediately to the following analog of Corollary 2.

COROLLARY 5. Let S and S ′ denote the closed polygonal regions associated to an n-gon and
m-gon respectively. If S and S ′ are affine equivalent, then m = n.
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The corollary follows from the theorem because an affine equivalence from S to S ′ must send
extreme points to extreme points and nonextreme points to nonextreme points by the results in
affine-convex.pdf.

Proof of Theorem 4. For the sake of giving a unified approach to several cases, we shall set
A−1 and An+1 equal to An−1 and A1 respectively, with similar conventions for the sets Gj (also
let G0 = Gn).

The first step is to prove that for each k satsifying 0 ≤ k < n we have AkAk+1∩S = [AkAk+1].
By hypothesis we know that Ak and Ak+1 lie in Gj for every j, and therefore by convexity the closed
segment [AkAk+1] is contained in ∩j Gj = S. Conversely, since Ak ∈ Ak−1Ak and Ak+1 ∈ Gk−1

we know that AkAk+1∩Gk−1 is the closed ray [AkAk+1, and similarly since Ak+1 ∈ Ak+1Ak+2 and
Ak ∈ Gk+1 we know that AkAk+1∩Gk+1 is the closed ray [Ak+1Ak. Combining these observations,
we have

AkAk+1 ∩ S ⊂ AkAk+1 ∩ Gk−1 ∩ Gk+1 = [AkAk+1 ∩ [Ak+1Ak = [AkAk+1]

and if we combine this with the second sentence of the paragraph we conclude that AkAk+1 ∩ S =
[AkAk+1], which is what we wanted to prove (the data are depicted in Figure 2).

By the preceding paragraph we know that S − ΓV is the set of all points where gj > 0 for
all j. We claim that none of the points in this relative complement are extreme points of S. —
By continuity, if gj(X) > 0 for all j then there is some δ > 0 such that |Y − X| < δ implies that
gj(Y ) > 0 for all j. If we take Y± to be the point X + 1

2
δ u where u is some unit vector, then

Y± ∈ S and X is the midpoint of [Y−Y+] and therefore X is not an extreme point of X.

Since ΓV ⊂ S, it follows that if X ∈ ΓV is an extreme point for S then it is also an extreme
point for ΓV . By the preceding paragraph we know that all extreme points for S are contained in
ΓV , and accordingly we know that an extreme point of S must be a vertex of ΓV . To complete the
proof, we need to show that each vertex is indeed an extreme point of S. This can be verified by
the same sort of argument employed in the proof of Theorem 1 (the most significant point is that
the function gk is nonnegative on all of S.

In particular, Corollary 5 implies that the closed polygonal regions defined by triangles and
convex quadrilaterals cannot be affine equivalent or congruent.

Inequivalence of solid polygonal and circular regions

It is also intuitively apparent that the solid closed region defined by a convex polygon is not
affine equivalent to the solid closed region defined by a circle. We shall conclude by presenting
one approach to proving this fact (see Theorem 8 below). Once again, the goal of obtaining more
insight into the structure of convex sets is at least equally important as the goal of proving the
inequivalence statement.

Definition. Let K ⊂ R
2 be a convex set, let L ⊂ R

2 be a line, and let p ∈ K ∩ L. Then L is
said to be a supporting line for K if K ⊂ L or all points of K lie on exactly one of the closed
half-planes determined by L.

The lines containing the edges of a solid polygonal region S are supporting lines for S; of
course there are other supporting lines which meet the vertices in just one point. In Proposition
7 we shall prove that if D is a solid circular region, then the supporting lines are the same as the
tangent lines to the boundary points (similar statements are true for ellipses and parabolas, but
we shall not try to prove these facts).
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The next result implies that supporting lines are well-behaved with respect to affine transfor-
mations.

PROPOSITION 6. Let K ⊂ R
2 be convex, let L be a supporting line for K at p ∈ K, and let

T be an affine transformation of R
2. Then T [L] is a supporting line for T [K] at T (p).

Recall that if L is a line in R
n and T is an affine transformation, then the image T [L] is also

a line.

Proof. If K ⊂ L this follows immediately, so suppose for the rest of this proof that K contains
some point q 6∈ L.

Let H be the closed half-plane determined by L for which K ⊂ H, so that q ∈ H −L. Then T

maps H to the closed half-plane H ′ containing the point T (q) by the results in affine-convex.pdf,
and therefore T [K] is contained in T [H] = H ′.

The preceding result will allow us to simplify the computations in the proof of the result on
supporting lines for closed circular regions.

PROPOSITION 7. Let D be a solid circular region in R
2 (in other words, all points X such

that |X −C| ≤ r for some C ∈ R
2 and r > 0). Then a line L is a supporting line for D if and only

if it is a tangent line to the boundary circle Γ at some point of the latter, and each supporting line
meets D at exactly one point.

For the sake of completeness, we shall formally define the boundary circle Γ of D (as above)
by the equation |X − C| = r.

Proof. The conclusion can be split into two parts as follows: First, if |X −C| < r then there are
no supporting lines passing through X. Second, if X lies on the boundary circle Γ, then there is
exactly one supporting line, and it is the tangent line to Γ at X. Since there is a translation which
maps D to a circular region of radius r whose center is the origin, by Proposition 6 it will suffice to
prove the result when C = 0. Similarly, for every nonzero point in R

2 there is a rotation sending
that point to some point (0, s) on the y-axis with s ≥ 0, by another application of Proposition 6 it
will suffice to prove the result when C = 0 and the point X ∈ D has coordinates (0, s) where s ≥ 0.

STEP 1. Suppose |X| < r, so that 0 ≤ s < r. Let M be a line passing through X.

Subcase 1.1: Suppose that M is a vertical line, so that it is defined by the equation
x = 0. Then the points (± r, 0) lie in D but are on opposite sides of M , and hence the
vertical line through X is not a supporting line.

Subcase 1.2: Suppose that M is not a vertical line, so that it is defined by an equation
of the form y = mx + s (the constant term must be s because y(0) = s). Then the points
(0,± r) lie in D but are on opposite sides of M , and hence the line M through X is not
a supporting line.

STEP 2. Suppose |X| is the point (0, r). Let M be a line passing through X.

Subcase 2.1: Suppose that M is a horizontal line, so that it is defined by the equation
y = 0. Then M is the tangent line to Γ at X, and it is also a supporting line because
there is a unique solution to the system of equations x2 + y2 = r2 and y = r; namely,
(x, y) = (0, r).

Subcase 2.2: Suppose that M is a vertical line, so that it is defined by the equation
x = 0. The reasoning in Subcase 1.1 shows that M is not a supporting line for D,
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Subcase 2.3: Suppose that M is neither a horizontal nor a vertical line, so that it is
defined by an equation of the form y = mx + r where m 6= 0 (the constant term must be
s because y(0) = r). Then the proof that M is not a supporting line reduces to verifying
the following statement:

CLAIM. There is some h > 0 such that each open half-plane determined by M contains points of
the form

(

x,
√

r2 − x2
)

with |x| < h.

In particular, Γ contains points on each open half-plane and hence M cannot be a supporting
line for D. There is a drawing of a typical example in Figure 3.

VERIFICATION OF THE CLAIM. Since the open half-planes determined by M are defined by
the inequalities y < mx+ r and y > mx+ r, another way of stating the claim is that there are real
numbers u, v such that 0 < |u|, |v| < h and

√

r2 − u2 < mu + r ,
√

r2 − v2 > mv + r .

Since r > 0, by continuity we can take h so small that mx + r > 0 for |x| < h. If we do so, then
the displayed inequalities are equivalent to their squares

r2 −u2 < (mu+ r)2 = m2u2 +2mru+ r2 , r2 − v2 > (mv + r)2 = m2v2 +2mrv + r2

which we can rewrite in the form

(m2 + 1)v2 + 2mrv < 0 < (m2 + 1)u2 + 2mru .

Let ϕ(x) = (m2 +1)x2 +2rmx, so that the preceding display can be rewritten as ϕ(v) < 0 < ϕ(u).
By construction ϕ(0) = 0 and ϕ′(x) = 2rm+2(m2 +1)x, so that ϕ′(0) 6= 0 and by continuity there
is some h > 0 suc that the signs of ϕ′(x) and ϕ′(0) are the same when |x| < h. This sign is positive
or negative, depending upon whether m is positive or negative, so that ϕ is strictly increasing or
decreasing for |x| < h.

If m > 0 then ϕ is strictly increasing, and hence if −h < u < 0 < v < h we have ϕ(u) < 0 <

ϕ(v), which is the conclusion we wanted. On the other hand, if m < 0 then ϕ is strictly decreasing,
and hence if −h < v < 0 < u < h we have ϕ(u) < 0 < ϕ(v), which is again the conclusion we
wanted. Therefore we have shown that Γ has points on both of the open half-planes determined by
M , and accordingly it cannot be a supporting line for D.

THEOREM 8. A solid polygonal region and a solid circular region cannot be affine equivalent.

Proof. Suppose that T is an affine transformation mapping the solid polygonal region S to the
solid circular region D. Let X ∈ P be such that X has a supporting line L for which L ∩ S is a
closed interval. By Proposition 6 the line T [L] is a supporting line for D = T [S] at T (X) a such
that T [L] ∩ D = T [L ∩ S] is also a closed interval. On the other hand, Proposition 7 implies that
no such supporting lines exist in D, and therefore there is no affine transformation T sending S to
D.
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DRAWINGS TO ACCOMPANY THE FILE 
 

Extreme points and affine equivalence 
 

 
 

Figure 1 
 

A convex set which contains  Δ ABC  will also contain the midpoint  Y  of the segment  [AX],  

where  X  is the midpoint of edge  [BC].  The notes prove the “visually obvious” fact that  Y  
does not belong to the triangle, and therefore the triangle is not a convex set. 

 

  
 

Figure 2 
 

The solid polygonal region is colored in green with a black border.  It is contained in the 
intersection of  

the closed half – plane determined by the line  Ak – 1 Ak  and the external point  Ak + 1  with 

the closed half – plane determined by the line  Ak + 1 Ak + 2  and the external point  Ak . 
 

One key step in the proof of Theorem  4  is to show that the intersection of the line  Ak Ak + 1  with 

the closed polygonal region is equal to the closed segment  [Ak Ak + 1],  and the illustration 

suggests that the intersection with the two closed half – planes is equal to that closed segment 
(hence the intersection of the line with the closed polygonal region is contained in the segment).  
 

  
Figure 3 

 

The line  M  passes through the top (red) point of the circle but is not tangent to the circle.  Note 

that there are points of the circle on both half – planes determined by M;  in fact, there are 

points of both types in a small arc centered at the top point. 


