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I I :    Vector algebra and Euclidean geometry 
 
  

As long as algebra and geometry proceeded 
along separate paths their advance was slow 
and their applications limited. But when these 
sciences joined company, they drew from each 
other fresh vitality and thenceforward marched 
on at a rapid pace toward perfection. 
 

J. – L. Lagrange (1736 – 1813) 
 

We have already given some indications of how one can study geometry using vectors, 
or more generally linear algebra.  In this unit we shall give a more systematic description 
of the framework for using linear algebra to study problems from classical Euclidean 
geometry in a comprehensive manner. 
 

One major goal of this unit is to give a modern and logically complete list of axioms for 
Euclidean geometry which is more or less in the spirit of Euclid’s Elements.  Generally 
we shall view these axioms as facts about the approach to geometry through linear 
algebra, which we began in the first unit.  The axioms split naturally into several groups 
which are discussed separately; namely, incidence,  betweenness,  separation, 
linear measurement,  angular measurement and  parallelism. 
 

The classical idea of congruence is closely related to the idea of moving an object 
without changing its size or shape.  Operations of this sort are special cases of 
geometric transformations, and we shall also cover this topic, partly for its own sake 
but mainly for its use as a mathematical model for the physical concept of rigid motion.   
 

In the course of discussing the various groups of axioms, we shall also prove some of 
their logical consequences, include a few remarks about the logical independence of 
certain axioms with respect to others, and present a few nonstandard examples of 
systems which satisfy some of the axioms but not others.  The main discussion of 
geometrical theorems will be given in the next unit. 
 
 

Historical background 
 
 

The following edited passages from Chapter 0 of Ryan’s book give some historical 
perspectives on the material in the next two units.  The comments in brackets have been 
added to amplify and clarify certain points and to avoid making statements that might be 
misleading, inaccurate or impossible to verify. 
 

In the beginning, geometry was a collection of rules for computing lengths, areas 
and volumes.  Many were crude approximations arrived at by trial and error.  This 
body of knowledge, developed and used in [numerous areas including] 
construction, navigation and surveying by the Babylonians and Egyptians, was 
passed along to ... [the Grecian culture] ... the Greeks transformed geometry into 

a [systematically] deductive science.  Around 300  B. C. E.,  Euclid of Alexandria 
organized ... [the most basic mathematical] knowledge of his day in such an 

effective fashion that [virtually] all geometers for the next  2000  years used his ... 
Elements as their starting point. ... 
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Although a great breakthrough at the time, the methods of Euclid are imperfect 
by [the much stricter] modern standards [which have been forced on the subject 
as it made enormous advances, particularly over the past two centuries]. ... 
 

Because progress in geometry had been frequently hampered by lack of 
computational facility, the invention of analytic geometry ... [mainly in the 17

th
 

century] made simpler approaches to more problems possible.  For example, it 
allowed an easy treatment of the theory of conics, a subject which had previously 
been very complicated [and whose importance in several areas of physics was 
increasing rapidly at the time] ... analytic methods have continued to be fruitful 
because they have allowed geometers to make use of new developments in 
algebra and calculus [and also the dramatic breakthroughs in computer 
technology over the past few decades]. ... 
 

Although Euclid [presumably] believed that his geometry contained true facts 
about the physical world, he realized that he was dealing with an idealization of 
reality.  [For example,] he [presumably] did not mean that there was such a thing 
physically as a breadthless length.  But he was relying on many of the intuitive 
properties of real objects. 

 

The latter is closely related to the logical gaps in the Elements that were mentioned 
earlier in the quotation.  In Ryan’s words, one very striking example is that “Euclid ... did 
not enunciate the following proposition, even though he used it in his very first theorem:   

 

Two circles, the sum of whose radii is greater than the distance 
between their centers, and the difference of whose radii is less 
than that distance, must have a point of intersection.”   

 

We shall discuss this result in Section I I I.6 of the notes.  There were also many other 
such issues; near the end of the 19th century several mathematicians brought the 
mathematical content of the Elements up to modern standards for logical completeness, 

and the 1900 publication of Foundations of Geometry by D. Hilbert (1862 – 1943) is 
often taken to mark the realization of this goal. 
 

Further information about the history of analytic geometry is contained in the following 
standard reference: 
 

C. B. Boyer.  History of Analytic Geometry.  Dover Books, New York, 
NY, 2004.  ISBN: 0–486–43832–5.  

 

  

I I.1    :    Approaches to geometry 
 

 
In geometry there is no royal road.   
 

Euclid (c. 325 B.C.E. – c. 265 B.C.E.) OR 

Menaechmus (c. 380 B.C.E.  –  c. 320 B.C.E.)  
 

It is elusive  —  and perhaps hopelessly naïve  —  to reduce a major part of mathematics 
to a single definition, but in any case one can informally describe geometry as the 
study of spatial configurations, relationships and measurements.     
 

Like nearly all branches of the sciences, geometry has theoretical and experimental 
components.  The latter corresponds to the “empirical approach” mentioned in Ryan.  
Current scientific thought is that Relativity Theory provides the best known model for 
physical space, and there is experimental evidence to support the relativistic viewpoint.  
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This means that the large – scale geometry of physical space (or space – time) is not 
given by classical Euclidean geometry, but the latter is a perfectly good approximation 

for small – scale purposes.  The situation is comparable to the geometry of the surface 
of the earth; it is not really flat, but if we only look at small pieces Euclidean geometry is 
completely adequate for many purposes.   A more substantive discussion of the 
geometry of physical space would require a background in physics well beyond the 
course prerequisites, so we shall not try to cover the experimental side of geometry 
here.    
 

On the theoretical side, there are two main approaches to the geometry, and both are 
mentioned in Ryan; these are the synthetic and analytic approaches.  The names 
arose from basic philosophical considerations that are described in the online reference  
 

http://plato.stanford.edu/entries/analytic-synthetic/ 
  

but for our purposes the following rough descriptions will suffice: 
 

• The synthetic approach deals with abstract geometric objects that are assumed 
to satisfy certain geometrical properties given by abstract axioms or postulates (in 
current usage, these words are synonymous).  Starting with this foundation, the 
approach uses deductive logic to draw further conclusions regarding points, lines, 
angles, triangles, circles, and other such plane and solid figures.  This is the kind 
of geometry that appears in Euclid’s Elements and has been the standard 
approach in high school geometry classes for generations.  One major advantage 
of such an approach is that one can begin very quickly, with a minimum of 
background or preparation. 

 

• The analytic approach models points by ordered pairs or triples of real numbers, 
and views objects like lines and planes as sets of such ordered pairs or triples.  
Starting with this foundation, the approach combines deductive logic with the full 
power of algebra and calculus to discover results about geometric objects such as 
systems of straight lines, conics, or more complicated curves and surfaces.  This is 
the approach to geometry that is taught in advanced high school and introductory 
college courses.  One major advantage of such an approach is that the systematic 
use of algebra streamlines the later development of the subject, replacing many 
complicated arguments by straightforward calculations. 

  

We shall take a   combined approach   to Euclidean geometry, in which we set things 
up analytically and take most basic axioms of synthetic Euclidean geometry for granted.  
The main advantage is that this will allow us to develop the subject far more quickly than 
we could if we limited ourselves to one approach.  However, there is also a theoretical 
disadvantage that should at least be mentioned.   
 

In mathematics, logical consistency is a fundamentally important issue.  
Logically inconsistent systems always lead to conclusions which undermine the 
value of the work.  Unfortunately, there are no absolute tests for logical 
consistency, but there is a very useful criterion called relative consistency, 
which means that if there is a logical problem with some given mathematical 
system then there is also a logical problem with our standard assumptions about 

the nonnegative integers (and no such problems have been discovered in the 75 
years since relative consistency became a standard criterion, despite enormous 
mathematical activity and progress during that time).  Of course, it is easier to 
test a system for relative consistency if it is based upon fewer rather than more 
assumptions.  The combined approach to geometry requires all the assumptions 
in both the synthetic and analytic approaches to the subject, and with so many 
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assumptions there are reasons for concern about consistency questions.  
Fortunately, it turns out that the combined approach does satisfy the relative 
consistency test; a proof requires a very large amount of work, much of which is 
well beyond the scope of this course, so for our purposes it will suffice to note 
this relative consistency and proceed without worrying further about such issues.  
The file  http://math.ucr.edu/~res/math133/verifications.pdf contains detailed 
information about one way of verifying the synthetic axioms for geometry in these 
notes.  
 

More specific comments on the general logical issues discussed above are given 
in the online document http://math.ucr.edu/~res/math144/setsnotes8.pdf  . 
 

 

Setting up the combined approach 
 
 

Our geometry is an abstract geometry.  The 
reasoning could be followed by a disembodied 
spirit with no concept of a physical point, just as 
a man blind from birth could understand the 
electromagnetic theory of light.   
 

H. G. Forder (1889 – 1981) 
 

Mathematicians are like Frenchmen; whatever 
you say to them they translate into their own 
language and forthwith it is something entirely 
different.    
 

J. W. von Goethe (1749 – 1832) 
 

Before proceeding, we shall include some explanatory comments.  These are adapted 
from the following online document: 
 

http://www.math.uh.edu/~dog/Math3305/Axiomatic%20Development.doc 
 

In all deductive systems it is necessary to view some concepts as undefined.  Any 
attempt to define everything ends up circling around the terms and using one to define 
the other.  This can be illustrated very well by looking up a simple word like “point” in a 
dictionary, then looking up the words used in the definition, and so on; eventually one of 
the definitions is going to contain the original word or some other word whose definition 

has already been checked.   A noted physicist, Richard P. Feynmann (1918 – 1988), 
expressed this need for some undefined concepts in more provocative terms: 
 

We can’t define anything precisely.  If we attempt to, we get into that paralysis of 
thought that comes to philosophers … one saying to the other: “You don’t know 
what you are talking about!” The second one says: “What do you mean by 
talking? What do you mean by you? What do you mean by know?” 

 

Since much of the early material below is probably covers topics that are extremely 
familiar, the reasons for doing so should also be clarified.  It is assumed that the reader 
has at least some familiarity with Euclidean geometry.  Our goal here is to deepen and 
widen an already established body of knowledge.  
 

The synthetic setting.   There are  2 – dimensional and  3 – dimensional versions, 

each of which begins with a nonempty set, which is called the plane or the space.  The 
elements of this set are generally called points.   The “undefined concepts” of lines 

and (in the  3 – dimensional case) planes are families of proper subsets of the plane or 
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the space, and a point is said to lie on a line or a plane if and only if it is a member of the 
appropriate subset.   There are several equivalent ways to formulate the other 
“undefined concepts” in Euclidean geometry, and our choices will be a priori notions of  
(1) distance between two points and  (2) angle measurement.  These data are 
assumed to satisfy certain rules or geometric axioms.   These rules split naturally into 
several groups.  We shall discuss the first of these (the Axioms of Incidence) below, and 
the remaining groups will be covered in the following four sections of this unit. 
 

The analytic setting.  Once again, there are  2 – dimensional and  3 – dimensional 

versions, and the points in these respective cases are elements of  RRRR
2
  and  RRRR

3
.  The 

lines and planes are the subsets with those names that we described in Unit I:  Lines 

are translates of  1 – dimensional vector subspaces, and similarly the planes are 

translates of  2 – dimensional subspaces.  Equivalently, lines in  RRRR
2
  and planes in  RRRR

3
 

can also be described as subsets defined by nontrivial linear equations of the form  a · x  

=   b.   The distance between two points is merely the usual distance given by the 

Pythagorean formula   || Y – X ||, and we  define  the angle measure   θ  of an angle    

∠∠∠∠ PXQ   using the substitutions   a  =  P – X   and   b  =  Q – X, and finally taking   
 

 
 

This definition might appear circular since trigonometric functions are usually defined in 
elementary courses by means of geometry.  However, it is also possible to define the 
sine and cosine functions (and hence their inverses) mathematically with no 

formal use of geometry; in particular, this is described in Appendix F of Ryan and in 
the file  http://math.ucr.edu/~res/math133/verifications.pdf .   
 

As noted before,  in a completely analytic treatment of Euclidean geometry, it would be 
necessary to verify explicitly that the interpretations for “undefined concepts” 
satisfy the synthetic axioms.  We shall simply assume that the analytic interpretations 
satisfy all of the geometric axioms to be described in this unit; a detailed verification of 
these assumptions appears in the previously cited file.   Although the formal verifications 
of these geometric axioms are theoretically indispensable, the details of the proofs are 
difficult to follow in places and not necessarily enlightening for the purposes of this 
course (see the previously cited file  http://math.ucr.edu/~res/math133/verifications.pdf  
for a systematic but sophisticated approach to verifying the axioms).  
 

In nearly all approaches to Euclidean geometry, drawings and figures to illustrate proofs 

are important, both as indispensable motivation and as aids to understanding the 
arguments.  Without visual intuition, it is difficult to imagine how or why classical 
Euclidean geometry might ever have been developed.  However, in keeping with the 
remark by Forder, the arguments must be constructed so that the figures play no formal 
role in the sequence of logical deductions (see also the quotations at the end of this 
section).   
 

Here are some additional references in which the synthetic and analytic approaches to 
the subject are developed in considerable detail: 
 

G. D. Birkhoff, “A set of postulates for plane geometry (based on 
scale and protractors),” Annals of Mathematics (2) 33 (1932), pp. 

329 – 345. 
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G. D. Birkhoff and R. Beatley, Basic Geometry (3
rd

  Edition). 
Chelsea – American Mathematical Society, Providence, RI, 1999. 

ISBN: 0–821–82101–6. 
 

H. G. Forder, The foundations of Euclidean geometry (Reprint 
of the original 1927 edition). Dover Books, New York, NY, 1958.  

 

E. E. Moïse, Elementary Geometry from an Advanced 

Standpoint  (3
rd

  Edition). Addison – Wesley, Reading, MA, 1990. 

ISBN: 0–201–50867–2. 
 

We shall also mention two online references.  The first one goes quite far into the 
subject, but at the undergraduate level, and comments on axiom systems may be found 
in the link Euclid’s Mathematical System listed there: 
 

http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/hyprgeom.html 
 

The following reference contains important additional material related to G. D. Birkhoff’s 
paper in the Annals of Mathematics: 
 

http://www.math.uiuc.edu/~gfrancis/M302/handouts/postulates.pdf 
 
 

The Incidence Axioms 
 
 

Nothing will come of nothing.  
 

W. Shakespeare (1564 – 1616),  King Lear,  

Act I, Sc. 1 
 

As a basis for our study we assume an arbitrary 
collection of entities of an arbitrary nature, 
entities which for brevity, we shall call points, 
and this quite independently of their nature. 
 

G. Fano (1871 – 1952)  
 

One must be able at any time to replace points, 
lines and planes with tables, chairs and beer 
mugs. 
 

D. Hilbert (1862 – 1943) 
 

What matters in mathematics ... is not the 
intrinsic nature of our terms but the logical 
nature of their interrelations. 
 

B. Russell (1872 – 1970) 
 

The unproved postulates with which we start are 
purely arbitrary. They must be consistent, but 
they had better lead to something interesting. 
 

J.  L. Coolidge (1873 – 1954)  
 

This group of axioms describes basic properties of points, lines and planes and how they 
are related to each other.  Sometimes these are also called the axioms of connection (a 
suitable translation of Hilbert’s usage  Verknüpfung  into a single English word is 

elusive).  The 2 – dimensional version is relatively simple, so we shall consider it first. 
 



 37 

Axiom I – 1 :  Given any two distinct points, there is exactly one line that contains 

them.  
 

Axiom I – 2 :  Every line contains at least two points.  
 

It is not possible to do much with these two assumptions, but at least we can show they 
imply another basic property of points and lines. 
 

Proposition 1.  Two distinct lines have at most one point in common. 
 

Proof.   Suppose that  L  and  M  are lines, and both contain two distinct points, say  A  
and  B.   By the first axiom, there is a unique line  N  containing these points.  Since  L  

and  M  are lines containing these points, it follows that  L  =  N  and  M  =  N, so that  L  

=  M.  Therefore  L  and  M  are not distinct, and we have proved the contrapositive of 

the proposition; namely,  if  L  and  M  have two distinct points in common,  then  L  =  

M.   By standard rules of logic, this means that we have also proved the original 

statement.���� 
 

The significance of this proof is not that it tells us something previously unknown (we  
expect   lines to have the given property !), but rather that it illustrates the logical 
relationship between basic geometric facts. 
 

We now proceed to describe the  3 – dimensional incidence axioms.  These start with 
the preceding two axioms and also include the following: 
 

Axiom I – 3 :  Given any three distinct points that are not contained in a line, there is 

exactly one plane that contains them.  
 

Axiom I – 4 :  Every plane contains at least three distinct points.  
 

Axiom I – 5 :  If  L is a line and two distinct points  A,  B  on  L  also lie on the plane  

P, then all points of  L  are contained in  P.  
 

Axiom I – 6 :  If two distinct planes have one point in common, then their intersection 

is a line.  
 

The next step is to state and prove some simple but important consequences of the  3 – 

dimensional incidence axioms. 
 

Proposition 2.  If L is a line and X is a point not on L, then there is a unique plane P 
which contains X and (all the points of) L. 
 

Proof.   We know that the line L contains at least two points, say  A  and  B.  There is no 
line containing the three points  A,  B  and  X, for the only line containing the first two 
points is the line  L  and  X  does not lie on  L.  Let  P  be the unique plane containing 
the points  A,  B,  X.  We claim that  P  contains  X  and  L, and in fact   P  is the only 
such plane. To see the first part, note that since  A  and  B  lie on  P  we also know that  
L  is contained in  P  by the fifth axiom.  Therefore  P  is a plane which contains  L  and  
X.  To see that  P  is the only such plane, note that every plane  Q  which contains  L  
and  X  automatically contains  A,  B  and  X; since  P  is the only such plane, it follows 

that  Q  must be equal to  P.���� 
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Proposition 3.  If L  and  M  are distinct lines that have one point in common, then 
there is a unique plane  P  which contains both L  and M.   
 

In other words, two intersecting lines in space determine a unique plane. 
 

Proof.   Let  X  be the point where  L  and  N  meet.  Since lines have at least two points, 
we know there is a second point  A  on  L  and a second point  B  on  M.   
 

We claim that there is no line containing all of the points  A,  B,  X; if so, this means 
there is a unique plane  P  containing them.  If there is a line  N  containing the given 

three points, then by the uniqueness of lines containing two points we have  L  =  N  

and  M  =  N,  contradicting our assumption that  L  and  M  are distinct. 
 

By the conclusions of the preceding paragraph and the fourth axiom, we know that the 
plane  P  contains both  L  and  M.   To complete the proof we need to show that  P  is 
the only such plane.  But this follows directly, for if  Q  is a plane containing both lines 
then it will also contain  A,  B  and  X;  since  P  is the only such plane, it follows that  Q  
must be equal to  P.���� 
 

In many situations it is important to have explicit analytic information about the lines or 
planes containing a given configuration.  It is generally easy to do this for the axioms 
described above. 
 

Examples.  1.  If  a,  b,  c  are noncollinear points (not contained on any line), then the 

unique plane containing them is equal to  a  +  W,  where  W  is the 2 – dimensional 

vector subspace spanned by  b – a  and  c – a.  
 

2.  If two distinct planes  P,  Q  are defined by nontrivial equations of the forms   a · x  =  

b  and  c · x  =  d,  and there is a point   y0  which lies on both planes, then the line of 

intersection consists of all vectors expressible as  y0  +  t (a × c)  for some scalar  t. 
 
 

Finite incidence planes 
 
 

There is no branch of mathematics, however 
abstract, which may not some day be applied to 
phenomena of the real world. 

 

N. Lobachevsky (1793 – 1856) 
 

The fictional writings of Charles Dickens (1812 – 1870),  Alexandre Dumas the elder 

(1802 – 1870), and Victor Hugo (1802 – 1885) are filled with incredible coincidences in 
which characters turn out to have more ties to each other than a reader would initially 
expect.   Similar things happen repeatedly in the relatively real world of mathematics.  
One particularly striking and easily stated example is the appearance of the 

geometrically important number  ππππ  in the theory of mathematical probability.   Our 
interest here lies with some novel examples of mathematical systems which satisfy the 
incidence axioms given above and are useful in nongeometrical contexts. 
 

There are many different ways of constructing mathematical systems satisfying the  2 –  

and  3 – dimensional incidence axioms given above.  In particular, here is one class of 
examples that are fairly trivial. 
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Planes with two – point lines.  Let  S  be any set which contains at least three 
elements, and define lines to be subsets with exactly two elements. Then lines are 
nonempty proper subsets and it is a straightforward exercise to verify that they satisfy 

incidence axioms  I – 1  and  I – 2.  In particular, if we take  S  to be a set with exactly 

three elements, then we have a  finite geometry. 
 

There are also many other examples of such finite geometries, but before presenting 

any of them we should address a fundamental question:   Are finite geometries anything 
more than abstract intellectual curiosities?  
Applications to scheduling problems.  One way to do so is to consider a question that 

is possibly interesting in its own right:  Suppose that we have a (finite) list of golfers and 
we wish to arrange a golf tournament consisting of several matches so that the following 

requirements will be satisfied:  
 

1. Every pair of players will play against each other exactly once. 
 

2. The number of players in every match will be at least some lower limit  L, but 

no greater than some upper limit  U. 
 

3. The number of matches will not exceed some upper limit  N. 
 

Finding a solution to this problem can be viewed as searching for a model of the first two 
incidence axioms with certain additional properties.  Specifically, the  “plane”  is the list 
of golfers, the “points” are the golfers themselves, and the  “lines”  are the lists of 
golfers who play in the various matches.  The second and third conditions amount to 

assuming that the number of points on a line must be between  L and  U, and the 

number of points in the plane is at most  N.   
 

Geometrical and combinatorial ideas allow one to answer such questions in numerous 
cases.  For example, suppose we want to assume that the number of players in a given 

match is always  3  or  4, and suppose we also want to add the following condition, 
perhaps in order to regulate the number of matches: 
 

4. For each pair of matches, there is one golfer who plays in both of them. 
 

If we insist that each match will have a threesome or foursome of golfers, then there is a 
tournament with the specified properties.  In particular, the following picture (showing the 
Fano plane) suggests a tournament of seven games for seven golfers in threesomes: 
 

 
 

(Sources:  http://en.wikipedia.org/wiki/Finite_geometry ,  
http://en.wikipedia.org/wiki/Projective_plane ) 

 

As in the preceding discussion, the points correspond to the seven golfers, and the 
seven curves (six straight lines plus a circle) correspond to the seven matches. 
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Here is an example involving foursomes, with 13  golfers and  13  matches: 
 

 
 

(Source: 
http://home.wlu.edu/~mcraea/Finite_Geometry/NoneuclideanGeometry/Prob14ProjPlane/problem14.html) 

 

Further information on similar objects appears in the online references cited below 
(however, they are written at a somewhat higher level than this course): 
 

http://planetmath.org/encyclopedia/FiniteProjectivePlane4.html 
 

http://math.ucr.edu/~res/progeom/pgnotes04.pdf  (see pp. 79 – 82) 
 

More serious and systematic applications of finite geometries arise in subjects such as 
coding theory and experimental design.  The following online reference discusses some 
of these: 
 

http://www.mnstate.edu/peil/geometry/C1AxiomSystem/4summary.htm 

 
  

I I.2    :     Synthetic axioms of order and separation 
 
 

Man is going to err so long as he is striving. 
 

J. W. von Goethe, Faust 
 

Sufficient unto the day is the rigor thereof 

[cf. Matthew 6: 34 in the King James Bible]. 
 

E. H. Moore (1862 – 1932)  
 

Very few books have ever been as widely circulated or as influential as Euclid’s 

Elements, and in many respects it serves as an excellent model for organizing and 
presenting a subject by means of deductive logic.  More details on this can be found in 
the following online document: 
 

http://math.ucr.edu/~res/math153/history03.pdf 
 

For many centuries the Elements was the definitive work for the mathematics it covered, 
but during the 19th century several mathematicians noticed that the Elements did not 
treat certain geometrical points in a logically complete (or rigorous) manner.   The first 
difficulty is the attempt to define basic terms line point, line and plane at the beginning of 

the first book.  As noted in Section I.1, a deductive treatment of geometry must start with 
some things that are undefined and subsequently define other concepts in terms of 
these primitive objects.  One can overcome this problem in the  Elements  quite easily 
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by simply agreeing that the definitions at the beginning are only meant to provide the 
crucial physical motivation and are not part of the formal deductive structure.  More 
serious problems arise with other necessary terms that are not defined and results that 
are used without either proving them earlier or assuming them explicitly.   
 

In fact, the first deficiency of this kind arises in the very first proposition of the Elements, 
which aims to prove that one can construct an equilateral triangle whose base is a given 
line segment, say  [AB].   The idea is simple:  One draws the circle with center  A 
passing through  B  and the circle with center  A  passing through  B.   If we do this, we 
“see” that the circles intersect in two points, one on each side of the line  AB, and either 
of these points together with  A  and  B  will give the vertices of an equilateral triangle 
which has  [AB]  as one of its sides.   

 
 

 (Source:  http://www.themathpage.com/aBookI/propI-1.htm) 
 

If we carry this out by drawing on a sheet of paper with an ordinary compass, everything 
works just fine.  However, the conclusion does not follow logically from the material 
introduced before the statement and proof of the proposition; in particular, this was 

noted by G. W. von Leibniz (1646 – 1716), who of course is much better known in 
mathematics for his role in the development of calculus.  We need some additional 
assumption to get information about the intersections of two circles in order to make the 

argument rigorous.  We shall discuss this further in Section I I I.6. 
 

Another problem involving a concept called  superposition  will be treated in Section  

I I.4  (since Euclid used this idea only twice when it could have been used at many other 
points to “simplify” proofs, he may have suspected it was problematic, but there is some 
disagreement on this point).  In this section, we shall consider the following notions that 
generally received inadequate attention in the Elements: 
 

1. The concept of  betweenness  for three points on the same line. 
 

2. The concepts of  two sides of a line  in a plane, and  two sides of a plane  
in space. 

 

3. The concepts of  interiors  and  exteriors  for angles, triangles and other 
such figures. 

 

The need for more specific treatment of such matters (generally known as order and 

separation properties) was noted explicitly by C. F. Gauss (1777 – 1855), and during 
the 19th century mathematicians developed logically rigorous methods for bridging the 
gaps.   Fortunately, such issues do not lead to problems with the ultimate correctness of 

any conclusions or results in the Elements.   However, they do have practical as well as 
theoretical significance, and there are examples to show that a lack of careful attention 
to the concepts listed above can lead to outrageous mistakes.   At the end of this section 

we shall describe a standard looking “proof” due to W. W. Rouse Ball (1850 – 1925), 
which at first may seem very reasonable and similar to arguments in elementary 
geometry texts but “proves” the ridiculous conclusion that every triangle is isosceles.  

—   As we shall note in our discussion, the mistake in the proof involves a lack of 



 42 

adequate attention to order and separation properties.   In other contexts it might not be 
so obvious that carelessness with such points leads to a false conclusion, and  the only 
way to eliminate such unwelcome mistakes is to set things up as carefully and 
completely as possible.   
 

The material on order and separation in this section will also play an important role in 

Unit V, where  the geometrical systems under consideration are counter – intuitive 
in many important respects and it is absolutely necessary to be more explicit and 
thorough in our reasoning. 
 
 

Balancing logical correctness, motivation and intelligibility 
 
 

Mathematics [sometimes] consists of proving the 
most obvious thing in the least obvious way. 
 

When introduced at the wrong time or place, 
good logic may be the worst enemy of good 
teaching.   
 

G. Polyá (1887–1985) 
 

If [most of] the best mathematicians did not 
recognize the need for these axioms and 
theorems for over two thousand years, how can 
we expect young people to see the need for 
them?  
 

M.  Kline (1908 – 1992) 
 

Sir, I have found you an argument. I am not 
obliged to find you an understanding.  
 

Samuel  Johnson (1709 – 1784) 
 

This [a theorem entirely unrelated to order and 
separation] … contains something to displease 
everybody.  
 

J. Frank  Adams (1930 – 1989)  
 

I begin to understand that while logic is a most 
excellent guide to governing our reason, it does 
not, as regards stimulation to discovery, 
compare with the power of sharp distinction 
which belongs to geometry.  
 

Galileo  Galilei (1564  – 1642) 
 

Unfortunately, although the modern mathematical treatment of order and separation 
properties resolves some nontrivial logical deficiencies in the Elements, it also 
generates some major pedagogical difficulties that can be difficult to resolve.  Most of 
the main points involving order and separation are intuitively fairly clear, but giving an 
organized and logically sound account of these matters turns out to be more complicated 
than one might expect at first glance.  No matter what framework one selects, the basic 
assumptions, definitions and theorems generally tend to be obvious looking statements 
with dull and unmotivated proofs.   The use of linear algebra does simplify things 
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somewhat, but only to a limited extent.  Kline discussed the problem at considerable 
length in the following book:  
 

M. Kline, Why Johnny Can’t Add: The Failure of the New Math.  Random House, 
New York, 1974. ISBN: 0–394–71981–6. 

 

This book takes some highly controversial positions on many issues which are far 
beyond our scope, but there is widespread agreement that the following highly edited 
passage raises a point that must be taken into account: 
 

Another consequence … is that a host of trivial theorems must be proved before the 
significant ones  [from classical geometry]  are reached. The number of minor 
theorems is so large that the major features of the subject [can very easily] fail to 
stand out. 

 

A similar opinion appears in the following passage from the State of California standards 

for teacher certification in mathematics: 
 

One should de–emphasize the proofs of simple theorems that come near the 
beginning of the axiomatic development.  The proofs of such theorems are harder to 
learn than those of theorems that follow, and this is true not only for beginners but 
also for professional mathematicians as well.  These proofs also tend to be tedious 
and uninspiring.  

 

We can summarize things very simply with a quotation due to the cultural luminary Marie 

De Vichy – Chamrond, marquise du Deffand (1697 –1780): 
 

The first step is [sometimes] the hardest. 
 

Yet another way of expressing the problem is to say the  logical  and  psychological 
orders of the subject matter are sometimes quite different.   
 

So what does this mean for geometry courses?  At the high school level it seems clear 
that one should restrict the rigorous discussion or order and separation properties to a 
bare minimum, but some intuitive discussion of the underlying concepts and facts seems 
unavoidable.   It would probably be appropriate to mention the ultimate need for a more 
rigorous approach to order and separation properties and that this can be worked out if 
one approaches everything from a more advanced standpoint.  In any case, all these 
considerations raise questions about presenting the usual proofs from high school 
geometry, and the following passage from the California standards makes the following 
specific suggestion:  
 

One way to [introduce] … the proofs of more substantive theorems as soon as 
possible is to adopt the method of “local axiomatics,” which is to list the facts one 
needs for a particular proof, and then proceed to construct the proof on the basis of 
these facts.  This approach mirrors the axiomatic method because, in effect, these 
facts are the “axioms” in this particular setting.  

 

Kline summarizes the situation very effectively in one sentence: 
 

Students can be much more readily attracted to the fruits rather than to the roots of 
mathematics.  

 

The implications for an upper division undergraduate course are related but differ in 
some key respects.   As noted in the California standards, a complete and rigorous 
account of elementary geometry is also challenging at the graduate level or perhaps 
even higher.  On the other hand, the discussion of order and separation needs to be 
more detailed, if for no other reason that the instructor of a high school course in 
geometry should know the subject matter in greater depth and detail than the course 
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contains, and in particular he or she should have some understanding of the hidden 
issues in the subject such as the ultimate need for proofs involving order and 
separation.  We have already noted the usefulness of linear algebra for analyzing and 
understanding such issues.    Some further general suggestions for studying the material 
of this section are given below. 
 
 

Priorities for understanding this section 
 
 

All human knowledge begins with intuition, 
thence proceeds to concepts and ends with 
[abstract] ideas. 
 

I. Kant (1724 – 1804),  Critique of Pure 
Reason,  Elementarlehre,  Pt. 2, Sec. 2 

 

Before we begin presenting definitions and logical consequences, we shall make a few 
general remarks related to the previous discussion.  We have noted that much if not all 
of the content will seem intuitively clear to many if not all readers, and this intuitive 
transparency clashes with the logical need for a slow, deliberate, perhaps even boring 
presentation of the material.  A reader who finds the treatment too tedious or dense may 
find it better to pick and choose material using the following priorities: 
 

1. The statements of the axioms, the definitions (and other terminology) and the 
statements of the results are the most important points; it is more important to 
recognize the basic contents and the correctness of the theorems than it is to 
follow the proofs. 

 

2. A solid understanding of what the preceding items mean in terms of 
coordinates and linear algebra is nearly as important as the first priority. 

 

3. The understanding of the proofs themselves is a distant third in importance. 
 

These guidelines are designed to be consistent with the previously quoted passage from 

the California standards for teaching certification in mathematics, and they also reflect 
an important point:    The main objective is to provide a logically secure framework for 
our intuitive understanding of geometrical phenomena.   As the following quotation 
indicates, mathematics usually requires a balance between intuition and rigorous logic. 
 

The basic assumptions from which any branch of mathematics proceeds  ...  are 
accepted, without proof, primarily because of their intuitive appeal.  And intuition 
plays a big role in the discovery of theorems as well, or [else] mathematicians would 
be spending most of their time trying to prove false statements.  It’s just that intuitive 
evidence is not accepted as conclusive.  

 

(R. Trudeau, The Non – Euclidean Revolution.  Birkhäuser, Boston, 1987, p. 4.) 

 
Managing conflicts between logical correctness, intuition  and clarity.  The 
preceding discussion reflects an important fact:  An argument which is logically complete 
is not necessarily easier to understand than an argument that is logically incomplete.  In 
particular, the proof of an “obvious” statement may require a great deal of work and 
some lengthy digressions from the mainstream of the argument.  Such interruptions can 
cause a reader to lose track of the main ideas in a proof.   In such cases it may be good 
to view such potential distractions as logical subroutines; a basic fact is needed to take 
the argument to the next step, but it may require some work to justify, so a reader might 
simply assume the crucial point has been justified, proceed with the rest of the 
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argument, and come back to the justification later when it will not disrupt the chain of 
thought.  Most professional mathematicians use this approach frequently, and there are 
obvious analogs in writing computer programs when the programmer inserts subroutines 
at appropriate steps.  This may also be viewed as a form of “working backwards” to 
complete a proof, a rearrangement of the material in psychological rather than logical 
order, or as a splitting of the proof into pieces that can be handled separately by the 
notion of “local axiomatics” described earlier.  
 
 

The betweenness relation 
 
 

Considerably more could be said about the issues raised in the preceding subsection, 
but we have already said a great deal, and we shall now proceed to the mathematics 
itself. 
 

Definition.   Let  x, y, z  be three distinct collinear points (in our given plane or 3 – 

dimensional space).  We shall say  y  is between  x  and  z,  and write  x∗y∗z,  if we 

have the distance equation:  d(x, z)   =   d(x, y)  +  d(y, z).   By the symmetry of this 

equation and the distance function we see that  
 

y  is between  x  and  z        if and only if        y  is between  z  and  x. 
 

Frequently one says that the points  x, y, z  are in the order        x∗y∗z , and for this 

reason the basic properties of betweenness are frequently called  axioms of order.  

Results from Section I.1 and some simple algebraic rewriting yield the following 
alternate characterizations of betweenness. 
 

Proposition 1.  Given three distinct collinear points  x, y, z  the relation  x∗y∗z  holds if 

and only if  y  =  x + t (z – x)  where  0  <  t  <  1, or equivalently if and only if we have  

y  =  sx + tz  where  s  and  t  are positive and  s + t  =  1. 
 

 
 

Proof.   The first equivalence follows from the result in Section  I.1  on the conditions 
under which the Triangle Inequality becomes an equation, and the second follows by 
simply expressing y as a linear combination of  x  and  z  on one hand and as a linear 

combination of  x  and  z – x  on the other.� 
 

We shall now state several basic properties of betweenness that may be taken as 
axioms in the synthetic approach. 
 

Axiom B – 1 :  Given any two distinct points  b  and  d, there exist points  a, c,  and  e 

lying on the line  bd  such that  a∗b∗d,  b∗c∗d,  and   b∗d∗e.  
 

 
 

Axiom B – 2 :   If   a,  b  and  c  are three distinct points lying on the same line, then 

one and only one of the points is between the other two.  
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We need the concept of betweenness in order to define several frequently used subsets 
of lines. 

 

Definition.  Let  A  and  B  be distinct points. 
 

• The closed segment     [AB]        consists of all  X  on line  AB  such that one of  X  =  

A,  X  =  B,  or  A∗X∗B is true.      

• The open segment      (AB)     consists of all  X  on  AB  such that  A∗X∗B   is true .   

  
• The closed ray     [AB     consists of all  X  on line  AB  such that one of  X  =  A,  X  

=  B,  A∗X∗B, or  A∗B∗X  is true.      

• The open ray     (AB    consists of all  X  on  AB  such that one of  X  =  B,   A∗X∗B, 

or  A∗B∗X  is true.      

• The opposite closed ray     [AB
OP

    consists of all X on line  AB  such that  X  =  A  

or  X∗A∗B is true.      

• The opposite open ray     (AB
OP    consists of all  X  on  AB such that  X∗A∗B  is 

true .   
 

The algebraic characterizations of these sets will be fundamentally important for our 
purposes.  Before stating and proving these characterizations, we must describe the 
meanings of various betweenness possibilities algebraically. 
 

Theorem 2.  Suppose that  a,  b  and  x  are distinct collinear points, and express  x  in 

the form  a + t (b – a)  for some (uniquely determined) scalar  t.  Then the following 

hold : 
 

(1) x  is between  a  and  b  if and only if   0  <  t  <  1. 

(2) a  is between  x  and  b  if and only if   t  <  0. 

(3) b  is between  x  and  a  if and only if   t  >  1. 
 

Proof.   There are exactly five mutually exclusive possibilities for  t  and five mutually 
exclusive possibilities for the relation of  x  to  a  and  b.  We claim it will suffice to have 
the following conclusions. 
 

(1) If  t  =  0  then  x  =  a. 

(2) If  t  =  1  then  x  =  b. 

(3) If  0  <  t  <  1  then  x  is between  a  and  b. 

(4) If  t  <  0  then  a  is between  x  and  b. 

(5) If  t  >  1  then  b  is between  x  and  a. 
 

These statements immediately imply the “if” implications in the theorem.  To see that 
they also imply the converses, proceed as follows: If  x  is between  a  and  b, we may 

use the previous result on betweenness to conclude that  0  <  t  <  1.  If  a  is between  

x  and  b, then by  (1) – (5)  any condition other than  t  <  0  will yield a condition that 

contradicts the known betweenness relation.  Similarly, if  b  is between  x  and  a, then 

by  (1) – (5)  any condition other than  t  >  1  will yield a condition that contradicts the 

known betweenness relation.  Therefore the “only if” implications also hold. 
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Thus we are reduced to verifying  (1) – (5).  The first two are trivial, and the third follows 

from the eariler characterization of betweenness.  Suppose we have   a  +  t (b – a), 

where   t  <  0.  Then we have  (a – x)    =   | t | (b – a) so that  
 

(b – x)    =    (b – a)  +  (a – x)    =    (b – a)  +  | t | (b – a) 
 

which in turn implies  || b – x ||    =    || b – a ||  +  || a – x ||, so that  a  is between  b 

and  x  by the previous proposition.   Now suppose that  a  +  t (b – a), where  t  <  1.  

Then we have   (x – a)     =     t (b – a),  so that 
 

(x – b)    =    (x – a)  –  (b – a)    =    (t  – 1) (b – a) 
 

and since  t – 1  >  0  the latter implies that  || x – a ||   =   || b – x ||  +  || b – a ||, so 

that  b  is between  a  and  x  by the previous proposition.� 
 

It is now an easy exercise to translate the preceding into information about the six 
subsets defined above. 
 

Theorem 3.  Suppose that  a,  b  and  x  are distinct collinear points, and express  x  in 

the form   a  +  t (b – a)  for some (uniquely determined) scalar  t.  Then the following 

hold: 
 

1. The point  x  lies on  [ab]  if and only if   0  ≤  t    ≤  1. 

2. The point  x  lies on  (ab)  if and only if   0  <   t   <  1. 

3. The point  x  lies on  [ab  if and only if   t     ≥   0. 

4. The point  x  lies on  (ab  if and only if   t   >  0. 

5. The point  x  lies on  [ab
OP

  if and only if   t     ≤   0. 

6. The point  x  lies on  (ab
OP

  if and only if   t   <   0. 
 

These follow immediately from  (1) – (5)  in the proof of the previous theorem.� 
 

The file  http://math.ucr.edu/~res/math133/betweenness.pdf  contains still further 
information on the numerical interpretation of betweenness. 
 

Some non – numerical consequences.   Here is a typical elementary consequence of 
the preceding material.  Once again, the conclusion is what one would expect: 
 

Proposition 4.  Suppose that  A,  B,  C,  D  are four distinct collinear points satisfying 

the conditions  A∗B∗D  and  B∗C∗D.  Then A∗B∗C and  A∗C∗D also hold. 
 

 
 

Proof.    The simplest characterization of betweenness is the additivity of distances, and 

this is what we shall use.  The assumptions imply that  d(A, D)   =   d(A, B)  +  d(B, D)  

and   d(A, C)   =   d(A, B)  +  d(B, C), and if we combine these we obtain the equation 
 

d(A, D)   =   d(A, B)  +  d(B, C)   +  d(C, D). 
 

Since  d(A, C)   ≤   d(A, B)  +  d(B, C)  and d(A, D)   ≤   d(A, C)  +  d(C, D)  we 

have     
 

d(A, C)  +  d(C, D)   ≤   d(A, B)  +  d(B, C)   +  d(C, D)  = 
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d(A, D)   ≤   d(A, C)  +  d(C, D). 
 

Since the left and right hand expressions are identical, the inequalities in the preceding 

expression must be equalities; therefore we have  d(A, D)   ≤   d(A, C)  +  d(C, D)  
and hence  A∗C∗D  holds.  Furthermore, if we subtract   d(C, D)  from the first and 

second expressions in the display above we obtain  d(A, C)   =   d(A, B)  +  d(B, C)  

and hence  A∗B∗C  holds.� 
 

Given three collinear points  a,  b  and  c  it is frequently important to understand the 

relationships among the closed rays   [ab,  [ac,  [ab
OP

,  and  [ac
OP

,  and likewise for 

the  relationships among the corresponding open rays  (ab,  (ac,  (ab
OP

,  and  (ac
OP.   

The following result addresses these questions.� 
 

Theorem 5.  Let  a,  b, c  be three distinct collinear points.  Then we have either   c  ∈∈∈∈     

(ab  or else  c  ∈∈∈∈     (ab
OP

.  In the first case we have   
 

[ab  =  [ac,   [ab
OP

  =  [ac
OP

,  (ab  =  (ac,  and  (ab
OP

  =  (ac
OP

. 
 

In the second case we have   
 

[ab  =  [ac
OP

,   [ab
OP

  =  [ac,  (ab  =  (ac
OP

,  and  (ab
OP

  =  (ac. 
 

Proof.   We have  c – a  =  k (b – a)   where  k  is a constant not equal to  0  or  1.  By 

the previous result on rays we know that  k  is positive if and only if  c  lies on  (ab  and  

k  is negative if and only if  c  lies on  (ab
OP

.   This proves the first part.  For the second, 
note that a point  x  on the line  ab  may be written in the form 
 

x    =    a  +  t (b – a)    =    a  +  t  k
 – 

1
(c – a). 

 

If  k  is positive then the coefficients of  (b – a)  and  (c – a)  have the same signs, and 

if  k  is negative then these coefficients have opposite signs.   If we combine this with the 
previous result on rays, we obtain the remaining conclusions in the result.� 
 
 

Additional properties of betweenness 
 
 

In order to illustrate the notion of betweenness and its uses in more detail and also to 
give some guidelines for working problems using this concept, we shall derive some 
additional properties of the betweenness relationship using vector methods; however, for 
the sake of conciseness many straightforward computational steps will be omitted.   
 

Example 1. Suppose that  a ≠ b  and for i = 1, 2, 3  we have  x i = a + t i (b – a), 

where   t i  ∈∈∈∈  RRRR.   If   t 1 < t 2 < t 3,  then we have the ordering relation x1∗x 2∗x 3 . 
 

SOLUTION:  The distance between  x i  and  x j  is equal to  || x i – x j || ,  and if we 

substitute the expressions for the vectors in question we see that 
 

|| x i – x j ||    =    | t i – t j | ·  || b – a || . 
 

Therefore we have 
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|| x 1 – x 3 ||   =   (t 3 – t 1) || b – a ||    =    (t 3 – t 2) || b – a ||  +  (t 2 – t 1) || b – a ||    = 
 

|| x 2 – x 3 ||  +   || x 1 – x 3 || 

and by the definition of betweenness this implies  x1∗x 2∗x 3.� 
 

Example 2.  Suppose that  a∗b∗c.  Then the closed ray  [bc is contained in the 

closed ray  [ac. 
 

SOLUTION:   By hypothesis we know that  b = a + t (c – a)  for some  t  satisfying   

0 < t < 1. 

If x  ∈∈∈∈  [bc,  then  x = b + u(c – b)  for some scalar  u  satisfying  u   ≥  0.  

Substituting the expression for  b  in the preceding equation, we find that 
 

x  =  a + (t + u – t u) · (c – a) . 
 

To show that  x  ∈∈∈∈  [ac,  we need to check that the coefficient of  c – a is positive. 

However, we have  t + u – t u  =  u(1 – t) + t ; the first term on the right hand side is 

a product of nonnegative factors and hence is nonnegative, and since   t   >   0  it follows 
that the entire expression is positive.� 
 

Example 3.  Suppose that  a∗b∗c  and  b∗x∗c.   Then we also have  a∗x∗c.  

 
SOLUTION:   This is similar to the first example.  By assumption we have   

b  =  a + t (c – a)  and  x  =  b + u(c – b)  where  0  <  u, t  <  1.  Once again, it 

follows that  x   =   a  +  (t + u – t u)  ·  (c – a) .   The desired conclusion will follow if 

we can verify that the coefficient of  c – a  lies strictly between  0  and  1.  Now 
 

(1 – t) (1 – u)   =  1 – u –  t  + t u 
 

and since the left hand side lies between  0  and  1  it follows that the same is true for 
the right hand side.  But this means that 
 

t + u – t u   =   1 –  (1 – u – t  + t u) 
 

must also lie strictly between  0  and  1.� 
 

Here is a final example along the lines of the first one. 
 

Example 4.  Suppose that  x  and  y  are distinct points such that both  a ∗x ∗c  and  

a ∗y ∗c  are both true.  Then either a ∗x ∗y or a∗y ∗x is true. 
 

SOLUTION:   We may write  x  =  a + t (c – a)   and  y  =  a + u (c – a)   where    

0  <  u, t  <  1.   Clearly we also have  a = a  +  0 (c – a).   Thus  either  0  <  t  <  u 

or   0  <  u  <  t  is true.   By the first example, if t  < u then we must have  a ∗x ∗y, 

and if  u < t then we must have  a∗y ∗x.� 
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Separation axioms 
 
 

There are two more axioms related to  B – 1  and  B – 2,  and they are stronger than 
the latter.  Given a plane  P, a line  L  contained in  P, and a point  X  which is on  P  but 
not  L, then experience suggests that every other point  Y  on  P  satisfies exactly one of 

the following three conditions:    
 

• X  and  Y  lie on the same side of  L. 

• Y  lies on  L. 

• X  and  Y  lie on opposite sides of  L. 
 

Similarly, if we are given a plane  P  in space and a point  X  not on  P, then experience 

suggests that every other point  Y  satisfies exactly one of the following three conditions:    
 

• X  and  Y  lie on the same side of  P. 

• Y  lies on  P. 

• X  and  Y  lie on opposite sides of  P. 
 

In order to state the axioms it is helpful to introduce a standard definition: 
 

Definition.  A subset of  K  of the plane or space is said to be  convex  if  a, b  ∈∈∈∈     K  

implies that the entire segment  [ab]  is contained in  K.  Alternatively, K  is convex if and 

only if  a, b  ∈∈∈∈     K  and  a∗x∗b  imply   x  ∈∈∈∈     K. 
 

In the illustrations below, the subset on the left is convex but the other two are not (one 
has a dent and the other has a hole). 

                               
 

 

Examples.  1. Lines are convex by the definition of betweenness, and by incidence 

axiom  I – 5 we know that planes are convex. 
 

2.  Open and closed rays are convex.   PROOF:  Suppose that we are given a closed 

ray  [ab with  x, y  ∈∈∈∈     [ab.  Then we have  x  =  a + t (b – a)  and  y  =  a + s (b – a)  

where  s  and  t   are nonnegative scalars.  Suppose now that  z  is between  x  and  y, 

so that we have   z  =  x + u(y – x)  where  0  <  u  <  1.  Straightforward algebraic 

computation shows that  z   =   a  +  v(b – a), where  v   =   t  +  u(t – s)  =   

(1 – u) t  +  u s.  Now all the numbers   s, t, u, (1 – u)   are nonnegative, and 

therefore  v  is also nonnegative, which implies  z  ∈∈∈∈     [ab.  A similar argument works for  

(ab, the main differences being that  s  and  t  are now positive and this is enough to 

imply that  v  is also positive.� 
 

3.   Results from differential and integral calculus show that many sets in  RRRR
2
  defined by 

inequalities of the form  y   ≥   f(x)  (where  f  is a well – behaved real valued function 
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defined on some interval) are convex.   There is a detailed account of this point in the 
following online document:  
 

http://math.ucr.edu/~res/math133/convex-functions.pdf 
 

The following result is often useful for showing that sets are convex. 
 

Proposition 6.     The intersection of two convex sets is convex. 
 

 
 

 
Example.   In the drawing, both oval shaped regions are convex, and their intersection, 
which is colored in green, is also convex. 
 

Proof.  Let  K1  and  K2  be convex sets, and suppose that  a  and  b  belong to their 

intersection.   Then we have  a, b  ∈∈∈∈     K1  and  a,  b  ∈∈∈∈     K2 .  Since  K1  and  K2  are 

convex, it follows that the segment   [ab]  is contained in both  K1  and  K2 ,  so that  [ab]  

is also contained in the intersection  K1  ∩∩∩∩  K2 .  Therefore  K1  ∩∩∩∩  K2   is convex.� 
 

Note.   A similar argument shows that an intersection of any number of nonempty 
convex sets is also convex. 
 

Corollary 7.    Open and closed segments are convex. 
 

Proof.    Let  A  and  B  be distinct points.  Then by definition the open segment  (AB)  is 
equal to the intersection of  (AB  and  (BA, and the closed segment  [AB]  is equal to the 
intersection of  [AB  and  [BA.� 
 

We shall now state the two axioms. 
 

Axiom B – 3  (Plane Separation Postulate) :   Given a plane  P, a line  L  contained 

in  P, the set of all points on  P  but not on  L  is a union of two disjoint, nonempty convex 

subsets  H1  and  H2  such that if  Y1  ∈∈∈∈     H1  and  Y2  ∈∈∈∈     H2  then the open segment   

( Y1 Y2 )  and the line  L have a point in common. 
 

Here is a picture illustrating the Plane Separation Postulate: 
 

 
 

The subsets  H1  and  H2  are called the  half – planes  determined by the line  L, or the 

sides of  L  in  P.  If   A  is a point which lies on, say,  H1  then we shall say that  H1  is 

the side of  L containing  A  and H2  is the side of  L opposite A.   Similarly, if  A  and  
B  are points of P  that do not lie on L,  we shall say that  A and B lie on the same side 

of  L  if they both lie in either  H1  and  H2  and that A  and B  lie on opposite sides of 

L  if one lies in  H1  and the other lies in  H2. 
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The file  http://math.ucr.edu/~res/math133/separation.pdf  describes the half – planes 
associated to a line in terms of coordinates and the equation defining a line. 
 

For  3 – dimensional space there is also a corresponding assumption involving planes 

in space. 
 

Axiom B – 4  (Space Separation Postulate) :   Given a plane  P  in space,  the set 

of all points in space that are not on  L  is a union of two disjoint, nonempty convex 

subsets  H1  and  H2  such that if  Y1  ∈∈∈∈     H1  and  Y2  ∈∈∈∈     H2  then the open segment    

(Y1 Y2 )  and the plane  P have a point in common. 
 

There are analogs of the notational conventions following  B – 3:  The subsets  H1  and  

H2  are called the  half – spaces  determined by the line  P,  or the sides of  P  in space.  

If  A  is a point which lies in, say,  H1,  then we shall say that  H1  is the side of  P  

containing  A  and  H2  is the side of  P  opposite  A.   Similarly, if  A  and  B  are points 
of space that do not lie on  P,  we shall say that   A   and   B  lie on the same side of  P  

if they both lie in either  H1  or  H2  and that  A  and  B  lie on opposite sides of  P  if one 

of the points lies in  H1  and the other point lies in  H2. 
 

The subsets  H1  and  H2  in the separation postulates have simple analytic descriptions 

in the most basic cases.   A line in  RRRR
2
  or a plane in  RRRR

3
  is always given by a nontrivial 

equation of the form  a · x =  b,  and the half – planes or half – spaces are simply the 

sets of points where   a · x  >  b   and   a · x  <  b.   In order to justify this statement, one 

should check that the sets defined by the given inequalities actually satisfy the properties 
stated in the postulates; one of the exercises for this section provides such a verifiction. 
 

Most of the discussion below will be restricted to the  2 – dimensional case, but the first 

result applies to both the  2 –  and  3 – dimensional cases. 
 

Proposition 8.  Let  M  denote either a line  L  in a plane  P  or a plane  Q  in space.  
Then the following hold: 
 

1. If  A  and  B  are on the same side of  M  and  B  and  C  are on the same side 

of  M, then  A  and  C  are on the same side of  M. 
 

2. If  A  and  B  are on opposite sides of  M  and  B  and  C  are on opposite 

sides of  M, then  A  and  C  are on the same side of   M. 
 

3. If  A  and  B  are on opposite sides of  M  and  B  and  C  are on the same 

side of  M, then  A  and  C  are on opposite sides of  M. 
 

Proof.   Let  H1  and  H2  be the subsets given by the appropriate separation postulate.  

The point  A  belongs to exactly one of them, so relabel these sets as  K1  and  K2   such 

that  A ∈∈∈∈    K1.  In part (1) the first hypothesis implies that  B ∈∈∈∈    K1,  and therefore the 

second hypothesis implies that  C ∈∈∈∈    K1, which yields the stated conclusion for this part 

of the result.  In part (2) the first hypothesis implies that  B ∈∈∈∈    K2,  and therefore the 

second hypothesis implies that  C ∈∈∈∈    K1,  which yields the stated conclusion for this part 

of the result.  Finally, in part (3) the first hypothesis implies that  B ∈∈∈∈    K2,  and therefore 
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the second hypothesis implies that  C ∈∈∈∈    K2,  which yields the stated conclusion for this 

part of the result.� 
 

Needless to say, it is useful to have a simple analytic criterion for two points in a plane to 
lie on the same or opposite sides of a line.  The next result provides one. 
 

Proposition 9.  Suppose that  A,  B,  C,  D  are points in  RRRR
2
  such that  C  and  D  do 

not lie on the line  AB.   Let   D   =   xA  +  yB  +  zC   be the unique expression for  D 

using barycentric coordinates, so that  x  +  y  +  z   =   1.   Then  C  and  D  lie on the 

same side of  AB  if  z  is positive, and they lie on opposite sides of  AB  if  z  is negative. 
 

Proof.  Before beginning, we note that  z  must be nonzero, for otherwise  D  would lie 

on the line  AB.   Suppose that  AB  is defined by the equation   m · P  =  k  for some 

nonzero vector  m  and some constant   k,  and let  q  =  m · C,  so that   q  –  k  is 
nonzero.  We then have 
 

m · D  =  m · (xA + yB + zC)  =  x k + y k + z q  =  (1 – z) k + q  =  k + z(q – k). 
 

Suppose that  z  >  0.  Then the right hand side is greater than  k  if  q  >  k  and less 

than  k  if  q  <  k, so it follows that both of  m ·  C  and  m · D  are either greater than  k  

or less than  k,  which means that they lie on the same side of  AB.   Now suppose that   

z   <   0.  Then the right hand side is less than  k  if  q   >   k  and greater than  k  if   

q   <   k, so it follows that one of  m · C  and  m · D  is greater than  k  and the other is 

less than  k,  which means that they lie on opposite sides of  AB .� 
 

The next obsevation is simple but important. 
 

Lemma 10.  Let  L  be a line in the plane, and let  M  be a line in the plane which meets  
L in exactly one point.  Then  M  contains points on both sides of  L. 
 

 
 

Proof.  Let  A  be the point where the lines meet, and let  B  be a second point of  M.  If 

C  is a second point of  L,  then  A,  B  and  C  are noncollinear  (otherwise  L  =  AC  =  

AB  =  M).   Let  D  =  A – (B – A)  =  2A – B,  so that  D  lies on  M.   It follows that 

the expression for  D  as a linear combination of  A  and  B  also gives the expression for 
D  in terms of  A,  B  and  C  by barycentric coordinates (since the latter are uniquely 
determined), and therefore by the previous result we know that  B  and  D  lie on 

opposite sides of the line  L  =  AC .� 
 

The preceding result is helpful in proving a result about the intersection of a line and a 

half – plane. 
 

Proposition 11.  Let  L  be a line in the plane,  let  H1  and  H2  be the two half – planes 
determined by  L, and let  M  be a line in the plane which meets  L  in exactly one point.  

Then each of the intersections  H1  ∩∩∩∩  M  and  H2  ∩∩∩∩  M   is an open ray. 
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Proof.  By the symmetry of the hypotheses, it suffices to prove the result for  H1  ∩∩∩∩  L . 

Let  A  be the point where the lines meet and let  B  be a point on  H1  ∩∩∩∩  M  whose 
existence is guaranteed by the preceding lemma.  Once again let  C  be a second pont 

of  L.  Given an arbitrary point   X  on  M,  express it as  A + k (B – A)  for a suitable 

scalar  k.  This linear combination can be rewritten as  X  =  (1 – k) A  +  k B,  and by 
the uniqueness of barycentric coordinates it follows that the latter is the expression for  X  

in terms of  A,  B,  C  by barycentric coordinates.  Thus  X  lies on  H1  ∩∩∩∩  M  if and only if  

k  is positive.  Since this is the same condition for  X  to lie on  (AB  it follows that   

H1  ∩∩∩∩  M   =   (AB  as required.� 
 

The following properties of betweenness and separation are often needed as steps in 
other geometric proofs. 
 

Proposition 12.  Let  L  be a line in the plane, let  M  be a line in the plane which meets  
L  in exactly one point  A, and let  B  and  C  be two other points on  M.  Then  B  and  C  

lie on the same side of the line  L  if either  A∗C∗B  or  A∗B∗C  is true, and they lie on 

opposite sides of the line  L  if   B∗A∗C is true. 
 

Proof.   Once again write  C  =   (1 – k) A + k B, and assume that  C  is distinct from  

A  and  B  so that  k  is not equal to  0  or  1.   If  A∗C∗B  is true then we must have   

0  <  k  <  1, while if  A∗B∗C  is true then  k  >  1, so in both cases  B  and  C  lie on 

the same side of  L  by previous results.  On the other hand, if  B∗A∗C  is true then   

k  <  0, so that  B  and  C  lie on opposite sides of  L  by previous results.�  
 

We shall conclude this discussion with a result that might look a bit more interesting.  It 
was used implicitly in the Elements, and the formal statement of it is due to M. Pasch 

(1843 – 1930); Pasch discovered many of the unstated assumptions in the Elements 
and made extremely influential contributions to the tightening of logical standards in 
synthetic geometry.   
 

Before stating the theorem, we need to formalize a standard concept. 
 

Definition.  Let  A, B  and  C  be noncollinear points.  Then  triangle  ABC, often written  

����ABC, is given by the union of the three closed segments  [AB], [BC]  and  [AC].  
Each of these segments is called a side of the triangle, and the original three points are 

called its vertices (sing. vertex). 
 

Theorem 13.  (Pasch’s “Postulate”)   Suppose we are given  ���� ABC and a line  L  in 
the same plane as the triangle such that  L  meets the open side  (AB)  in exactly one 
point.  Then either  L  passes through  C  or else  L  has a point in common with  (AC)  
or   (BC).  
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The assumption that  L  and  ����ABC  are coplanar is essential; if this does not hold, 

then  L  and the plane of  ����ABC  have at most one point in common. 
 

Proof.   This turns out to be fairly simple.  By the previous result we know that  A  and  B  
lie on opposite sides of  L.  What can we say about  C?  If  C does not lie on  L, then it 
lies on one of the two sides of  L. If  C  lies on the same side of  L  as  A,  then  C and  B 
lie on opposite sides of  L, and therefore the line  L  and the segment  (BC)  have a point 
in common.  On the other hand, if  C  lies on the same side of  L  as  B, then  C  and  A  
lie on opposite sides of  L, and therefore the line  L  and the segment  (AC)  have a point 

in common.  In every case one of the options in the conclusion is satisfied.� 
 

We have tried to limit our discussion to results that will be needed at several points later 
in the course.  Some additional results of a similar nature will be covered after we 
introduce angles and their interiors in the next section.   One can also use the axioms in 
this section to prove a few results which are definitely less obvious or expected than the 
ones presented above.   Here is an online reference: 
 

http://en.wikipedia.org/wiki/Sylvester-Gallai_theorem 
 
 

Numerical examples 
 
 

Here are two problems which illustrate the concepts in described above; they are similar 
to some of the homework exercises. 
 

PROBLEM 14.   Let  L  be the line in  RRRR
2
  defined by   y  =  2x + 1.  Determine which 

of the three points  (4, 10),  (5, 8)  and  (2, 3)  lie on one side of  L  and which lie on 
the other. 
 

SOLUTION.   As indicated in  http://math.ucr.edu/~res/math133/separation.pdf   the sides 

of the line  L  are given by the pair of inequalities  y  <  2x + 1 and   y  >  2x + 1.  

Since  10  >  2 · 4 + 1,  8  <  2 · 5 + 1,  and  3  <  2 · 2 + 1,  it follows that the second 

and third points lie on one side of the line, while the first lies on the opposite side.���� 
 

PROBLEM 15.  If  A  =  (0, 2) ,  B  =  (1, 3)  and  C  =  (6, 10) ,  determine whether 

the points (10, 6)  lie on the same side of  AB  as  C,  and do the same for  (5, 9). 
 

SOLUTION.   If  D  is either of the two points, we need to find the barycentric 

coordinates of  D  with respect to  A,  B,  and  C.  In other words, we need to express  D  

as a linear combination   x A + y B + z C, where  x + y + z  =  1.  Then  D  will lie on 

the same side of  AB  as  C  if  z  >  0,  and on the opposite side of  AB  if  z  <  0.  
 

The standard method to find the barycentric coordinates is to write  D – A  =  y(B – A) 

+ z(C – A)  by means of the equation  x  =  1 – y – z; since  B – A  and  C – A  are 

linearly independent, it follows that there are unique choices for  y  and  z.  Now  B – A  

=  (1, 1)  and  C – A  =  (6, 8).  Therefore if  D  =  (10, 6)   we obtain the vector 

equation  (10, 4)    =    y (1, 1)  +  z (6, 8)   and if we solve the associated system of 

scalar equations we find that   z  =  – 3, so that the points  (10, 6)  and  (6, 10)  lie 

on opposite sides of  AB.  Next, if we take the point   D  =  (5, 9), then we get the 
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equation  (5, 7)    =    y (1, 1)  +  z (6, 8)    and if we solve the associated system of 

scalar equations we find that  z  =  1, so that  the points  (5, 9)  and  (6, 10)  lie on 

the same side of  AB.���� 

 

GENERAL SUGGESTION.  In each exercise (and others like them), it may be helpful to 

confirm the results of the calculations by plotting the lines and points on graph paper.���� 
 
 

Comments on the Appendix 
 
 

In our discussion of the need to be careful about issues of betweenness and separation, 
we mentioned that too much reliance on drawings can lead to inaccurate conclusions, 
and we mentioned a classic example in which reasonable but inaccurate drawings can 
lead to the obviously false conclusion that every triangle is isosceles.  Most of the 
appendix is devoted to presenting this example, but there are also some general 
comments at the end that are important.   
 

A reader who does not wish to go through the details of the example may skip to the 
final subheading of this section  (The role of drawings in geometrical proofs)  without 
loss of continuity.  

 
Appendix – The isosceles triangle fallacy 

 

 
The truth of a theory is in your mind, not in your 
eyes. 

Albert Einstein (1879 – 1955) 
 

The treatment below is adapted from the following source: 
 

http://www.mathpages.com/home/kmath392.htm 
 

One well – known illustration of the logical fallacies to which Euclid’s methods are 
vulnerable  (or at least would be vulnerable if we didn’t “cheat” by allowing ourselves to 
be guided by accurately drawn figures)  is the “proof” that all triangles are isosceles. 
The discussion below explicitly assumes that the reader is familiar with some basic ideas 
from elementary (high school) geometry. 
 

Given an arbitrary triangle ����ABC, draw the angle bisector of the interior angle at  A, 
and draw the perpendicular bisector of the closed segment  [BC]  with midpoint  D, as 
shown below: 
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If the angle bisector at  A  and the perpendicular bisector of  [BC]  are parallel or 

identical, then  ����ABC  is isosceles (this is a valid result in Euclidean geometry and can 
be shown directly by standard methods; we shall omit the details because they do not 
involve the fallacy).  On the other hand, if the lines in questions are not parallel, then 
they intersect at a point, which we shall call  P,  and we can drop the perpendiculars 
from  P  to  AB  and  AC, which will meet these lines at  E  and  F  respectively.  Now the 

two triangles  ����APE   and  ����APF  have equal angles and share a common side, so 

they are congruent.  Therefore  d(P, E)  =  d(P, F).   Also, since  D  is the midpoint of  

[BC], the triangles  ����PDB  and  ����PDC  are congruent right triangles, and hence  

 d(P, B)  =  d(P, C).  From this it follows that the triangles  ����PEB  and  ����PFC  are 

congruent to each other, so that we must have  d(B, E) + d(E, A)  =  d(C, F) + d(F, A), 
and hence  ����ABC  must be isosceles.(����???)   
 

This conclusion is obviously absurd,  
but  where  is the mistake? 

 

The key to understanding the problem is to scrutinize the drawing upon which the 
incorrect reasoning was based, and if we construct the points and lines described in this 
proof more carefully and accurately, we see that the actual configuration doesn’t look 

like the picture above.  It turns out that the point  P  must lie outside the triangle  ����ABC.  
However, if we carry out the proof on this basis, and if we now assume the points  E  
and  F  also fall outside the triangle, we still conclude that the triangle is isosceles.  This 
too is an incorrect configuration.  The  actual configuration  of points given by the 

stated construction is for the point  P  to be outside the triangle  ����ABC, and for exactly 
one of the points  E,  F  to be between the vertices of the triangle, as shown below: 
 

 
We still have  d(A, E)  =  d(A, F),  d(P, E)  =  d(P, F),  and  d(P, B)  =  d(P, C),  and it 

still follows that  d(B, E)  =  d(F, C),  but now we see that even though  d(A, E)  =   

d(A, F)  and  d(B, E) = d(F, C)  it does  not   follow that  d(A, B) = d(A, C), for even 
though  F  is between  A  and  C, the point  E  is   not   between  A  and  B.   
 

Actually, the argument above does yield valid (but different and far less intriguing) 
conclusions.  For example, if sides  [AB]  and  [AC]  have unequal lengths, then either  

E  does not lie on  [AB]  or else  F  does not lie on  [AC].  For if both were true the 

argument above would show that  ����ABC  is isosceles, and we have assumed this is 
false. 
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Additional examples.  There are several other well – known examples of fallacious, but 
reasonable looking, geometrical arguments which purportedly yield conclusions that are 
patently false.   Many such arguments are contained in the second part of the following 
book: 
 

A. I. Fetisov  and YA. S. Dubnov,  Proof in Geometry: With 
“Mistakes in Geometric Proofs.”  Dover Books, New York, 2006.  

 

Also, here is an online reference for a (fallacious) geometrical “proof” that  99  =  100: 
 

http://www.cut-the-knot.com/pythagoras/tricky.html 

 
Optical illusions.  Of course, optical illusions provide amusing and important examples 
of ways in which pictures can be deceptive.  Here are some online references for this 
topic: 
 

http://ccl.northwestern.edu/netlogo/models/OpticalIllusions 
 

http://www.123opticalillusions.com/ 
 

http://www.eyetricks.com/illusions.htm  
 

http://www.exploratorium.edu/exhibits/f_exhibits.html  
 

http://en.wikipedia.org/wiki/Optical_illusion  
 

http://www.michaelbach.de/ot/ 
 
 

The role of drawings in geometrical proofs 
 
 

Geometry is the science of correct reasoning 
[based] on incorrect figures. 
 

G. Polyá  
 

You can see a lot just by looking. 
 

L. R. “Yogi” Berra (1925 – ) 
 

For me, following a geometrical argument purely 
logically, without a picture for it constantly in 
front of me, is impossible. 
 

F. Klein (1849 – 1925)  
 

To paraphrase the online references given above, one may view the logical proofs in 
Euclid’s Elements as  fairly well constructed arguments  which are  sometimes 
intuitive  and in certain cases are  based upon assumptions that drawings which 
accompany the written arguments are always accurate.   The modern standard for 
logical correctness is to give completely rigorous proofs of abstract concepts in which  
the reasoning may be frequently suggested by roughly drawn figures but does not 
formally depend upon them.   
 

 
 

 
 

 


