
III : 8 Rectangular coordinate systems

Ever since the invention of rectangular coordinate systems in the seventeenth century,
rectangular coordinates have proven to be a powerful tool for understanding and proving
geometric facts; some of this was implicit in Greek studies of ellipses, hyperbolas and
parabolas by Apollonius and others, but the decisive steps in formulating the modern use
of coordinates really date back to the work of R. Descartes (1596–1650), P. de Fermat
(1601–1669) and their numerous successors during the next hundred years. The purpose
of this section is to formulate the main results on finding convenient systems of rectangular
coordinates. Usually there are many choices, and using a good coordinate system is often
crucial to coming up with a proof that is both concise and convincing. As noted in the
Wikipedia article on coordinate systems, “Knowledge of how to erect a coordinate system
where there is none [or no a priori choice] is essential to applying” coordinate geometry
to a specific problem.

The main result

Here is the theorem for coordinatizing planes.

Theorem 1. Let P be a system satisfying the axioms for Euclidean geometry, and let

a, b, c be three noncollinear points in P. Then there is a 1− 1 correspondence ϕ : P → R
2

such that the following hold:

(1) Under the mapping ϕ, the Cartesian lines, distances and angle measures corre-

spond to the abstract lines, distances and angle measures in P.

(2) ϕ(a) = (0, 0), ϕ(b) = (x, 0) where x > 0, and ϕ(c) = (x2, y) where y > 0.

A complete proof of this result is implicit in Chapter 17 of Moise, Elementary Geometry

from an Advanced Standpoint, Third Edition (Addison-Wesley, Reading MA etc., 1990).
We shall verify a special case later in this document.

Typical examples

In the applications of this result one frequently can read off some worthwhile infor-
mation about the coordinate system fairly quickly.

Example 1. Suppose that we have two parallel lines L and M in P, and let a, b, c be
three noncollinear points in P such that the first two lie on L and the third point lies on
M . If we apply the theorem to these three points, then the line L, which joins the first
two points, will correspond to the x-axis, and the line M , which contains c, will be defined
by an equation of the form y = h, where h > 0.

Example 2. Suppose that we have points a, b in P. If δ is the distance between the
two points and m is the midpoint of [ab], then we can find a coordinate system such that
a corresponds to (δ/2, 0) and m corresponds to (0, 0). The conditions on the coordinate
system then implies that b corresponds to (−δ/2, 0).
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The file locus-problems.pdf proves a standard result in coordinate geometry, first
using classical methods and then using coordinate gteometry with a judiciously chosen
rectangular coordinate system; the second proof is much simpler than the first, but the
discussion in locus-problems.pdf explains why we are not really getting something for
nothing. Much of the hard work is being done by the implicit properties of the rectangular
coordinate system. Additional examples showing the power of rectangular coordinates
appear in locus-problems2.pdf and locus-problems3.pdf.

Three-dimensional analog

There is a corresponding result in solid geometry, with the following changes: In
the first part, planes must be included as part of the structural data. In the second
part, one starts with a quadruple of noncoplanar points a, b, c, d and the mapping ϕ
satisfies ϕ(a) = (0, 0, 0), ϕ(b) = (x, 0, 0) where x > 0, ϕ(c) = (x2, y, 0) where y > 0, and
ϕ(d) = (x3, y3, z) where z > 0.

Proof of the main result

We shall do this when P is a coordinate plane Rn with distance and angle measurement
defined as in linear algebra. Most of the reasoning is contained in the following elaboration
of the Gram-Schmidt orhonormalization process:

Proposition 2. Let V be an n-dimensional real inner product space, and let y1, · · · , yn
be a basis for V . Then there is an orthonormal basis u1, · · · , un for V such that the

following hold:

(i) For each ksuch that 1 ≤ k ≤ n the spans of y1, · · · , yk and u1, · · · , uk are equal.

(ii) For each ksuch that 1 ≤ k ≤ n the inner product 〈yk, uk〉 is positive.

Proof that Proposition 2 implies Theorem 1. Recall that we are restricting ourselves to
the case where P is the standard coordinate plane R

2; the general case follows from the
uniqueness result cited in Theorem V.5.4 of the file geometrynotes05b.f13.pdf.

Since a, b and c are noncollinear points, it follows that y1 = b − a and y2 = c − a
form a basis for R

2. Let {u1, u2} be the orthonormal basis given by Proposition 2, and
let L : R2 → R

2 be the unique orthogonal linear transformation which maps the standard
unit vectors {e1, e2} to {u1, u2}. Then the isometry ϕ(x) = L−1(x− a) has the required
properties.

Note that one can extend this argument to coordinate n-spaces Rn for all n ≥ 3.

Proof of Proposition 2. The first step is to apply the Gram-Schmidt orthonormalization
process to the basis y1, · · · , yn. This yields an orthonormal basis v1, · · · , vn which satisfies
Property (i) in the proposition. Hence it is only necessary to modify the construction so
that (ii) also holds.

To see that this is possible, let k be an arbitrary integer between 1 and n, and consider
the inner product 〈yk, vk〉. We claim that this inner product is nonzero. If k = 1 this is
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true because vk is a nonzero multiple of the nonzero vector yk, and if k ≥ 2 this is true
because 〈yk, vk〉 = 0 and the standard formula

yk =

k∑

j=1

〈yk, vj〉

would imply that yk lies in the span of v1, · · · , vk−1, which is equal to the span of
y1, · · · , yk−1. The latter would imply that the vectors y1, · · · , yn are linearly dependent,
which contradicts the assumption that the latter form a basis. Hence the inner product is
nonzero as claimed.

Finally, modify the orthonormal basis v1, · · · , vn as follows: If 〈yk, vk〉 is positive let
uk = vk, and if 〈yk, vk〉 is negative let uk = −vk. Clearly the spans of v1, · · · , vk and
u1, · · · , uk are identical since the vectors in one are nonzero multiples of the vectors in
the other, so Property (i) is still satisfied. Furthermore, our modification guarantees that
〈yk, uk〉 is always positive, so that Property (ii) is also satisfied.
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