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I V  :    Projective geometry 
 
  

Projective geometry is all geometry. 
 

Attributed to A. Cayley (1821 – 1895) 
 

As its name might suggest, projective geometry  deals with the geometric theory of 

projecting 3 – dimensional figures onto a flat (planar) surface, but over the 
centuries it has become considerably more.  Although the Cayley quotation almost 
certainly overstated the role of projective geometry even when it was supposedly made, 
it is true that the subject provides a unified framework for a wide range of classical 
topics, including all the material in this course (however, the development of this 
framework requires concepts well beyond the scope these notes).  In the present 
section, we shall look at the original motivation for projective geometry and explain how 
it yields techniques for solving some geometric problems that are considerably more 
difficult to work by traditional methods from classical Greek geometry.  Further 
information (often at a somewhat higher level) is given in various documents from the 
following online directory: 
 

http://math.ucr.edu/~res/progeom 
  
 
 

I V .1 : Perspective images 
 
 

The senses delight in things duly proportioned, 
as in what is after their own kind.  
 

Thomas Aquinas (1225 – 1274), Summa 

Theologica, Part 1, Question 5. 
 

Let no one who is not a mathematician read my 
works.  
 

Leonardo da Vinci (1452 – 1519), Trattato della 
Pittura (Treatise on painting) 
 

It is often convenient to think of projective geometry as really beginning with the efforts 
of artists in the late Middle Ages to create pictures that were more “lifelike” in their 
representations of physical objects. This important shift in emphasis took place in Italian 

painting starting around the year 1300.  Prior to that time the central objects of paintings 
were generally flat and more symbolic than real in appearance; frequently emphasis was 
on depicting religious or spiritual truths rather than the real, physical world.  As society in 
Italy became more sophisticated, there was an increased interest in using art to depict a 
wider range of themes, some of which were physical rather than spiritual, and to so in a 
manner that more accurately captured the image that the human eye actually sees. 
 

The earlier concepts of art are clearly represented in an illustration on the next page 
titled Woman teaching geometry, which appears Illustration at the beginning of a 

medieval translation of Euclid’s Elements from around 1310. 
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(Source: http://en.wikipedia.org/wiki/Euclid's_Elements) 
 

In the picture, it looks as if the objects on the table are directly facing the viewer and 
ready to fall off the table’s surface, and one can also notice the flat appearance of nearly 
all the faces.   
 

The paintings of Giotto (Ambrogio Bondone, 1267 – 1337), especially when compared to 

those of his predecessor Giovanni Cimabue (originally Cenni di Pepo, 1240 – 1302), 
show the growing interest in visual accuracy quite convincingly, and other painters from 
the 14th and early 15th century followed this trend.  One can look at these paintings and 
see how the artists succeeded in showing things pretty accurately much of the time even 
though they were far from perfect.  Eventually artists with particularly good backgrounds 
in Euclidean geometry began a systematic study of the whole subject and developed a 
mathematically precise theory of perspective drawing in the 15th and 16th centuries. 
 

Before discussing the development of perspective drawing, we shall describe the main 
ideas.  One way of deriving a mathematical model for drawing in perspective is to start 
with physical models.  Since photographic images are good examples of perspective 
images, we shall start by analyzing a simple type of camera known as a  pinhole 
camera,  which is basically a rectangular box such that all but one of the sides are 
opaque, one is translucent (say made of waxed paper or ground glass), and there is a 
very small hole in the middle of the side opposite the translucent side.  If such a camera 
is aimed at a physical object with the small opening facing the object, then a perspective 
image of the latter will be visible on the translucent side.  As the drawing below 
suggests, this image will be inverted. 
 

 
 

(Source: http://en.wikipedia.org/wiki/Pinhole_camera) 
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The illustration of the pinhole camera leads to a simple rule for finding perspective 
images.  Specifically, if one take the line joining the center of the small opening to a point 
on the object (in this case a tree), then the perspective image of the latter point is where 
that line meets the plane of the translucent “screen.”  Another possible model is given 
by placing a flat, transparent piece of glass between the observer’s eye and the object, 
where the plane of the glass is perpendicular to the line passing through the eye and 
directed straight ahead. 

 

 
 

(Source: http://www.cs.appstate.edu/~sjg/class/1010/wc/geom/perspective/) 
 

Formally, we may proceed as follows:  Assume that the eye  E  is at some point on the 

positive  z – axis, the canvas or photographic plate is the  x y – plane, and the object  P 

to be included in the painting is at the point  P,  which is on the opposite side of the the  

x y – plane as the eye  E.  Then the image point  Q  on the canvas will be the point 

where the line  EP meets the  x y – plane. 
 

 
 

A detailed analysis of this geometrically defined mapping yields numerous facts that are 
logical consequences of the construction and Euclidean geometry.   For example, one 
immediately has the following conclusion: 
 

Proposition 1.   If P,  P′′′′  and  P′′′′′′′′  are collinear points on the opposite side of  E  and  Q,  

Q′′′′  and  Q′′′′′′′′  are their perspective images, then  Q,  Q′′′′  and  Q′′′′′′′′  are also collinear. 
 

Proof.    Let  L  be the line containing the three points.  Then there is a plane  A  

containing  L  and the point  E; the three points  Q,  Q′′′′  and  Q′′′′′′′′  all lie on the 
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intersection of the plane  A  with the  x y – plane.  Since the intersection of two planes is 

a line it follows that the three points must lie on this line.� 
 

One significant difference between the mathematical and physical models is worth 
noting at this point.  For drawing purposes, the only points which matter are those which 
are “in front of  E.”   In other words, if we let  FFFF  denote the “face plane” through  E 

which is parallel to the  x y – plane, then these are the points which lie on the same side 

of  FFFF  as the  x y – plane itself.  However, one can also define the perspective images of 

points which are on the opposite side of  FFFF  by the geometric construction given above, 
and we shall do so from now on.  Of course, there are also many other things about 
perspective projections that are important, and we shall discuss some of them in later 
sections of this unit. 
 

It is enlightening to examine some paintings from the 14th and 15th centuries to see how 
well they conform to these rules for perspective drawing.  In particular, the site  
 

http://www.ski.org/CWTyler_lab/CWTyler/Art%20Investigations/PerspectiveHi
story/Perspective.BriefHistory.html 

 

analyzes Giotto’s painting Jesus Before the Caïf  (1305) and shows that the rules of 
perspective are followed very accurately in some parts of the painting but less accurately 
in others. 
 

Historical notes.   We know that some aspects of perspective drawing were known in 
ancient times, and the concept appears explicitly in the writings of Vitruvius (Marcus 

Vitruvius Pollio, c. 80 B. C. E. – 25 B. C. E.).  However, the first medieval artist known to 
investigate the geometric theory of perspective as a subject in its own right was Fillipo 

Brunelleschi (1377 – 1446), and the first text on the theory was Della Pittura, which was 

written by Leon Battista Alberti (1404 – 1472).   The influence of geometric perspective 
theory on paintings during the fifteenth century is obvious upon examining works of that 
period.  The most mathematical of all the works on perspective written by the Italian 
Renaissance artists in the middle of the 15th century was On perspective for painting (De 

prospectiva pingendi)  by Piero della Francesca (1412 – 1492).   Not surprisingly, there 
were many further books written on the subject at the time (including a lost work by 
Leonardo da Vinci), of which we shall only mention the Treatise on Mensuration with the 
Compass and Ruler in Lines, Planes, and Whole Bodies, which was written by Albrecht 

Dürer (1471 – 1528) in 1525. 
 

Here are some additional online references for the theory of perspective along with a few 

examples: 
http://mathforum.org/sum95/math_and/perspective/perspect.html 

 

http://www.math.utah.edu/~treiberg/Perspect/Perspect.htm 
 

http://www.dartmouth.edu/~matc/math5.geometry/unit11/unit11.html 
 

Here is a link to a perspective graphic that is animated: 
 

http://gaetan.bugeaud.free.fr/pcent.htm 
 

One can use the theory of perspective to determine precisely how much smaller the 

image of an object becomes as it recedes from the  x y – plane, and more generally one 

can use algebraic and geometric methods to obtain fairly complete quantitative 
information about the perspective image of an object.  Such questions can be answered 
very systematically and efficiently using computers, and most of the time (if not always) 
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the  3 – dimensional graphic images on computer screens are essentially determined 

by applying the rules for perspective drawing systematically.  We shall not give explicit 
formulas here, but we shall discuss some aspects of such formulas later in this unit. 
 
 

From perspective drawing to projective geometry 
 
 

The mathematical theory of perspective drawing originated as a practical application of 
classical geometry, but it was also the first step in the development of new ways of 
analyzing certain geometrical problems, many (but not all) of which were much different 
from those which were studied in classical Greek geometry.  Eventually mathematicians 
began to realize that they could use perspective projections to discover new geometrical 
facts.   We conclude this section with a fundamental example which illustrates how ideas 
involving geometric perspective evolved into the beginnings of projective geometry. 
 

Suppose that we have two distinct triangles  ����ABC  and  ����A′′′′B′′′′C′′′′  such that the lines  

AA′′′′,  BB′′′′  and  CC′′′′  joining the corresponding vertices all meet at some point  O.  
Suppose further that the lines containing the corresponding sides intersect; more 

precisely, suppose that the lines  AB  and  A′′′′B′′′′  meet at  D,  the lines  AC  and  A′′′′C′′′′  

meet at  E,  and the lines  BC  and  B′′′′C′′′′  meet at F.  The picture below suggests that the 
points  D,  E,  and  F  all lie on a straight line.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Source:  http://www.jimloy.com/geometry/desargue.htm) 
 

The first reaction to such a picture is to ask whether this is just a coincidence, and the 
obvious way to test this is to look at a different picture in which all the same conditions 
are satisfied.  One example from  http://en.wikipedia.org/wiki/Desargues’_theorem   is 

depicted below.   
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The interactive figure in  http://www.pandd.demon.nl/cabrijava/transv_des.htm  strongly 
suggests that the three points  D,  E,  and  F  are always collinear (unfortunately, the text 

is in Dutch; if one clicks and drags on any of the points  A,  B,  C  or  A′′′′,  B′′′′,  C′′′′  then 

the positions of the points  D,  E,  F  will change but these points will still be collinear).  
In fact, one can prove that under the stated conditions the points  D,  E,  and  F  are  
always  collinear, and this is known as  Desargues’ Theorem  because of the crucial 

role that G. Desargues (1591 – 1661) played in its discovery.   
 

There are two significant points to note about this theorem.  First of all, neither the 
hypothesis nor the conclusion has anything to do with measurements.  This leads 
directly to the second point:  By themselves, the classical theorems in the  Elements  do 
not provide much insight into how one might prove the result; with the tools developed 
thus far in this course, the most promising approach would probably involve using the 

Theorem of Menelaus in the exercises for Section  I.4, but even this would require some 
work.  Furthermore, even if one can put together such a proof (and this is possible), 
there is still an obvious question of motivating the result and understanding how it may 
have been originally discovered.  Since this section of the notes deals with perspective 
projections, one might guess that the latter were somehow involved. 
 

One way of thinking about Desargues’ Theorem is to interpret a planar configuration in 

the theorem as a perspective projection (or photographic image) of a 3 – dimensional 
figure in which the points  Q,  X,  Y  and  Z  are not coplanar and these points project to  

O,  A,  B  and  C respectively.  It follows that the points  X′′′′,  Y′′′′  and  Z′′′′ are also not 

collinear and the planes of  ����XYZ  and  ����X′′′′Y′′′′Z′′′′  are distinct (we assume that  X′′′′,  Y′′′′  

and  Z′′′′  project to  AA′′′′,  BB′′′′  and  CC′′′′ respectively).  If we know that the lines  XY  and  

X′′′′ Y′′′′  meet at  U,  the lines  XZ  and  X′′′′Z′′′′  meet at  V,  and the lines  YZ  and  Y′′′′W′′′′  
meet at  W,  then we know that  U,  V  and  W  project to  D,  E  and  F  respectively.   

Now the points  U,  V  and  W  lie on plane  XYZ  and also on plane  X′′′′ Y′′′′ Z′′′′.   By 
construction these planes are distinct, so this intersection must be a line.   Finally, the 
image of this line under perspective projection is a line, and it contains the images of  U,  
V  and  W, which are just the original points  D,  E  and  F.   This implies that the latter 

three points are collinear. —  Note that  this is  NOT  a complete proof   because we 

have not tried to verify that our original configuration actually is the image of some 3 – 
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dimensional configuration, but  our purpose here was to motivate the result rather 

than to prove it;  we shall give a rigorous proof in Section 4 of this unit.  However, we 
should note that it is possible to prove that one can realize a planar configuration of the 

given type as a perspective projection of a 3 – dimensional figure (although we shall not 

verify this fact in the notes). 
 

Desargues also made several other discoveries that are now fundamental to projective 
geometry, and many will be discussed in later sections of this unit.   Although there were 

subsequent contributions to the subject by B. Pascal (1623 – 1662) and P. de la Hire 

(1640 –1718), the subject did not develop much further until the early 19th century with 

the work of J. – V.  Poncelet (1788 – 1867) and J. Gergonne (1771 – 1859).  We shall 

mention some important advances by Poncelet and Gergonne at various points in this 

unit, and we shall discuss Pascal’s Theorem in Section 5  of this unit.  The revival of 
interest in projective geometry and perspective transformations is also reflected by 

somewhat different work of G. Monge (1745 – 1818) on the systematic application of 
mathematics to constructing planar images of objects in space; his theory of  
descriptive geometry  evolved into the theory of  orthographic projection,  which is a 
fundamental graphical technique in modern mechanical drawing.   Here are some online 
references for orthographic projection: 

 

http://en.wikipedia.org/wiki/Orthographic_projection 
 

http://www.geneng.mtu.edu/courses/3000/current/07.spac.vis2.pdf 
 

http://mathworld.wolfram.com/OrthographicProjection.html 
 

 
 

I V .2    :    Adjoining ideal points 
 
 

Extending the space … [is a] fruitful method for 
extracting understandable results from the 

bewildering chaos of special cases.  
 

J. Dieudonné 
 

In calculus — and particularly in the theory of limits — it is frequently convenient to add 
one or two  numbers at infinity  to the real number system.  Among the reasons for this 
are the following: 
 

1. It allows one to formulate otherwise complicated notions more understandably 
(for example, infinite limits). 

 

2. It emphasizes the similarities between the infinite limit concept and the 
ordinary limit concept. 

 

3. It allows one to perform some formal manipulations with limits much more 
easily. 

 

For example, suppose we add a single point at infinity to the real numbers; as usual, we 

denote it by the symbol ∞∞∞∞.  If  f  is a real valued rational function of the form  f (x)  =  

p(x) /q(x),  where  p(x)  and  q(x)  are polynomials such that  q(x)  is nonzero, then 

strictly speaking  f   is not definable at the finite set of real roots of the denominator.  
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However, an inspection of the graph of  f  suggests that one define its value at these 

roots to be ∞∞∞∞.   Proceeding further along these lines, one can even define  f (∞∞∞∞)  so 

that  f   is “continuous at ∞∞∞∞,”  where the value may be an ordinary real number or  ∞∞∞∞.   
 
The purpose of this section is to discuss a similar phenomenon in projective geometry.  
We shall start with a basic observation about perspective transformations. 
 

VANISHING POINT PROPERTY.  If  L,  M  and  N  are mutually parallel lines, then their 
perspective images pass through a single point (the vanishing point) on the image 
plane.  The set of all vamishing points on all lines in a given plane is collinear, and the 
line is called the vanishing line. Furthermore, as an object moves away from the viewer 
along one of these lines, the limiting position of the object will be this vanishing point.���� 
 

 
 

(Source: 
http://www.collegeahuntsic.qc.ca/Pagesdept/Hist_geo/Atelier/Parcours/Moderne/perspective.html) 

 

As the drawing above suggests, the vanishing line corresponds to the visual horizon line 
in a picture.  Here is another drawing depicting two different families of mutually parallel 
lines which have different vanishing points on the vanishing line. 
 

 
 

(Source: http://www.math.nus.edu.sg/aslaksen/projects/perspective/alberti.htm) 
 

The preceding drawings suggest that we might want to adjoin a points at infinity to each 
line such that (1) all lines parallel to a given line L have the same point at infinity as the 

line L, (2) the perspective images of these points of infinity lie on the horizon line.   
 
 

Some mathematical justifications 
 
 

Before elaborating on these points, for the sake of completeness, we shall prove that our 
observations on perspective projections are mathematically valid.  A reader who wishes 
to skip the statement and proof of the next results may do so without loss of continuity. 
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Theorem 1.   Let  P  be a plane, let  E  be a point in space not on  P, and let  L  be a line 
in space which is not parallel to  P.  Take  N  to be the unique line through  E  which is 
equal or parallel to  L, and let  B  be the point at which  N  meets  P.   
 

1. If   L* is the line in  P  which contains the image of  L  under perspective 

projection onto  P  with center  E,  then  L* contains  B. 
 

2. If   M  is an arbitrary line which is parallel to  L  and   M* is the line in  P which 

contains the image of  L  under perspective projection onto  P  with center  E, 

then either the lines  L* and  M*  are equal or they meet at  B. 
 

3. Suppose that  Q  is a plane which is not parallel to   P,  and suppose that the line  

L  is contained in  Q.  If  Q'  is the unique plane through  E  which is equal or 

parallel to  Q,  then  P  meets  Q’  in a line  H,  and the intersection  L ∩∩∩∩ H  

contains  B. 
 

In everyday language,  H  is the horizon or vanishing line of the plane  Q  for the 
perspective projection onto  P;  in physical terms, if an object  X  travels away from  P 

along the line  L,  then  B  is the limiting position for the image  X*  on  P  as  X  goes off 
to infinity.  
 

 
 

Proof.  As suggested by the diagram, we take  A  and  B  to be the intersections of  L  
and  N  with the plane  P  (these exist because the lines are not parallel to  P).  The point  
F  represents the foot of the perpendicular from  E  to  P. 
 

We start by proving the first assertion in the conclusion of the theorem.  If  L  =  N  then 
the conclusion is trivial, so assume that  L || M.   By assumption we know that there is a 
plane, say  LN, containing both  L  and  N.   Since  LN  and  P  have two points  A  and  

B  in common (and  A  ≠  B  because these points lie on parallel lines), it follows that  

LN  meets  P  in the line  AB.  We claim that  AB  is the line containing the image of  L  
under perspective projection.  Let  X  be a typical point of  Y  for which the perspective 
projection is defined, and let  Y  be its image.  Then  Y  lies on  P  and on the line  EX.   
Since  X  and  E  lie on the plane  LN,  the entire line  EX  lies in  LN; in particular,  Y  

lies on  LN.   But this means that  Y  lies in  LN  ∩∩∩∩  P   =   AB . 
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The second part follows immediately from the first, for in this case one finds that the 

image  M*  will be a line containing  B. 
 

Finally, to prove the third part, we start by proving that  N  is contained in  Q′′′′.   Linear 
algebra provides an easy way of doing so.  Since  L  and  N  are equal or parallel, it 

follows that we can write  N   =   z  +  L  for some vector  z.   Using this, we write  E   =   

z  +  v  for some point  v  on  L;  since  Q  and  Q′′′′  are equal and parallel such that the 

first contains  L  (hence also  v)  and the second contains  E,  it follows from the Coset 

Property that  Q′′′′  =   z  +  Q.   Therefore we have that  N   =   z  +  L  is contained in   

z  +  Q   =   Q′′′′. 
 

Since  P  is not parallel to  Q  and  Q′′′′  is parallel or equal to  Q,  it follows that  Q′′′′ is not 

parallel to  P  and hence meets it in a line  H.  Since  N  is contained in  Q′′′′,  it follows 

that the intersection  N ∩∩∩∩ P,  which consists of only the point  B,  will be contained in    

H  =  Q′′′′ ∩∩∩∩ P.���� 
 

We shall now give some provisional justification for the remarks about continuity.  For 
this purpose it is convenient to look at a stripped down situation in which we examine the 
perspective image of one line upon another in the same plane.  Actually, there are two 
cases depending upon whether or not the lines are parallel, but the latter can be handled 
very easily and does not shed any insight upon our discussion, so an analysis of these 
cases is left to the exercises. 
 

Since we are interested in two lines, say  L  and  M,  which are not parallel, they will 

meet at some point that we shall call  U.   In this case perspective projection comes 

close to defining a  1 – 1  correspondence between the points of  L  and the points of  

M,  but this is not quite the case.  Suppose that  S  is a point on  L such that  QS || M .  

Then it is not possible to define the perspective projection of  S  onto  M .    Similarly, if  

T  is a point on  M  such that  QT  is parallel to  L, then  T  is not the perspective 

projection of any point on  L.   In fact, what happens is that perspective projection 

defines a  1 – 1 correspondence from all the points of  L  except  S  to all the points of  

M  except  T.  
 

 
 

Our previous remarks suggest that if we add points at infinity to the two lines, then  S  

should go to the point at infinity for  M  and the point at infinity for  L  should go to  T.   

If we do this, then we have a  1 – 1  correspondence of the extended lines   L*  and  

M*  (where each is obtained from the original line by adding a point at infinity).  Set 

theory allows us to define such functions, but we would also like to know that this 
definition has the sorts of continuity properties we claimed earlier in this section. 
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Consider what happens if we look at points approaching  S  or  T.  If we let  X  ∈∈∈∈        L 

approach  S,  then the distance from its perspective image  Y  and the point  T  appears 

to go off to infinity.  Similarly, if we let  Y  ∈∈∈∈     M   approach  T  and suppose that  X  is 

the point on  L whose perspective image is  Y,  then the distance between  X  and  S  

also appears to go off to infinity.   
 

We must now show that if we write things down explicitly in terms of linear algebra and 
barycentric coordinates, then  we can make all of this mathematically precise.   The 
first step is to note that  Q,  T,  U  and  S  (in that order) form the vertices of a 

parallelogram; it follows that we have the vector equation  Q  =  S  +  T  –  U. 
 

Suppose now that  X  ∈∈∈∈    L   and  Y  ∈∈∈∈    M  correspond under the perspective projection.  

Then we can find  scalars   p  and  q  such that   X   =   U  +  p (S – U)  and   Y   =    
U  +  q (T – U);  we need to determine the relationship between  p  and  q ,  and the key 

to doing so is to recall that  Y  lies on the line joining  Q  and   X,  so that  Y  =   

Q  +  z (X – Q)  for some scalar   z .   If we expand  X  and  Q  in terms of  S,  T  and  U  
using the formulas of this paragraph, then after grouping like terms we find that 
 

Y    =    (1 + pz – z) S  +  (1 – z) T  +  (2z – pz – 1) U 
 

and the sum of the coefficients is  1.   Since we also have  Y   =   q T  +  (1 – q )U,  we 

may set the corresponding barycentric coordinates equal and consequently obtain the 
equations 
 

1 + pz – z   =   0        and        1  –  z   =   q . 
 

Eliminating  z  from these equations, we obtain the relation 
 

1

1
1

1 −
−=

−
=

pp

p
q  

 

which shows that if  X  approaches  S,  so that  p →→→→  1,  then  q →→→→ ∞∞∞∞,  and therefore  Y  

goes off to infinity.  Similarly, the relation shows that if  X  goes off to infinity (in either 

direction!),  so that  p →→→→ ∞∞∞∞,  then  q →→→→  1,  and therefore  Y  approaches  T.    In 

particular, the latter reflects our assertion that the vanishing point on the image line is the 
limiting position of the image of an object on the original line as the object goes off to 
infinity.���� 
 
 

Incidence structure of the projective extensions 
 
 

One reason for the invention of the projective 
plane was to simplify the incidence geometry of 

the Euclidean plane.  
 

Ryan, p. 127 
 

For  n  =  2  or  3,  the preceding discussion suggests the construction of new sets of 

points  PPPP (RRRR
n)  which have ordinary points consisting of the points of  RRRR

n 
 and a new 

class of  ideal points,  with one for every maximal family of pairwise parallel lines in RRRR
n
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(by this we mean the family of all lines parallel or equal to a given line  L).   We shall 

conclude this section by defining lines and (if  n  =  3)  planes in  PPPP (RRRR
n)  which are 

compatible with the usual notions for ordinary points in RRRR
n
.    

 

There are two classes of lines. 
 

1. For each line  L  in  RRRR
n
, an extended ordinary line  PPPP (L)  which consists of 

the points on  L  and the ideal point  L
++++
  given by the unique maximal family 

of mutually parallel lines containing  L. 
 

2. For each plane  P,  an ideal line (or line at infinity)   LLLL∞∞∞∞ (P)  which consists 

of the ideal points corresponding to all the ordinary lines which are contained 

in  P; if   n  =  2,  this means there is just one ideal line and we call it  LLLL∞∞∞∞ . 
 

Furthermore, if  n  =  3  then there are two similar classes of planes. 
 

1. For each plane  Q  in  RRRR
3
,  an  extended ordinary plane  PPPP (Q)  which 

consists of the points on  Q  and the points on the ideal line   LLLL∞∞∞∞ (Q) 

described above. 
 

2. There is also an additional  ideal plane  (or  plane at infinity)   PPPP∞∞∞∞   

consisting of all the ideal points.  
 

If we adopt these notions of lines and planes for  PPPP(RRRR
2)   and  PPPP(RRRR

3)  then one obtains 

systems which satisfy the corresponding incidence axioms from Section  I I.1 of these 
notes.  We shall not give the detailed verification here, but we shall note two important 
additional properties which are satisfied by these systems and are quite different from 
the properties of Euclidean lines and planes. 
 

Proposition 2.  Two coplanar lines in  PPPP(RRRR
3)  always have a point in common, and two 

planes in  PPPP(RRRR
2)  always have a line in common. 

 

We shall prove these facts in the next section of the notes. 
 
 

Ideal points and Galilean transformations 
 
 

In the discussion of perspective transformations, we have seen that ideal points provide 
an effective means for stating relatively complicated conclusions in a more unified 

manner.  In particular, we have noted that a perspective projection from a given line  L  

to a second, nonparallel, line  M  determines a  1 – 1  correspondence from the 

extended line   L *   to the extended line  M *.   There are numerous other instances in 

geometry where statements involving a list of special cases can be reformulated in a 
unified manner by use of ideal points.   We shall discuss several examples of this 

phenomenon in Section  5  of this unit, and we shall conclude this section with yet 
another example of this sort. 
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Theorem 3.  Let  T  be an isometry of  RRRR
2
 given by a Galilean transformation  

 

T(x)    =    Ax  +  b 
 

where A is given by an orthogonal matrix with a  positive  determinant, and let S be a 

subset of   RRRR
2
  such that T(x)  ≠  x for all  x  ∈∈∈∈        S.   Then either  (1)  the 

perpendicular bisectors for all closed segments  [x T(x)]  (where  x  ∈∈∈∈        S)  all pass 

through a single point, or else  (2)  these perpendicular bisectors are parallel or equal to 

one of the lines in the family. 
 

This result is stated and proved on pages 355 – 356 of the book by  Usiskin, Peressini, 
Marchisotto and Stanley  that was mentioned earlier in these notes.  Our interests here 
are limited to restating the conclusion using ideal points.  In the language of this section, 
the conclusion states that the extended perpendicular bisectors (obtained by adjoining 

points at infinity) either  (1) pass through a single ordinary point, or else  (2)  pass 
through a single ideal point.   Of course, one can restate this conclusion in a unified form 
because both options mean that the extended perpendicular bisectors all pass through a 

single point (which may be either ordinary or ideal) .  
 

Incidentally, there is a companion result to the theorem above if  T(x)   =   Ax  +  b  is a 

Galilean transformations for which  A  is an orthogonal matrix whose determinant is 

negative;  the statement and proof are given on page 356  of the book cited above.  
 
 

Ideal points  —  fact or fantasy? 
 
 

The concept of ideal points or points at infinity may seem extremely unnatural because 
it is not physically possible to visualize them.  However, such points are abstract 
mathematical objects rather than concrete physical objects, and the following passage 
from an old encyclopedia article explains why mathematicians are comfortable with 
using them. 
 

Ordinary points [whose physical dimensions are all equal to zero] are just as 
much idealized as the points at infinity.  No one has ever seen an actual point or 
realized it by an experiment of any sort.  Like the point at infinity it is an ideal 
[abstract] creation which is useful for some of the purposes of science. 

 

[Encyclopædia Britannica, 14
th

 Ed. (1956), Vol. 18, p. 573, 
article on Projective Geometry] 

 

The final clause in this citation is important enough to merit further comment; namely, 
the rules of logic guarantee that one can formally introduce ideal points into geometry 
without creating logical problems, but the usefulness of ideal points for effectively 
studying questions of independent interest provides the crucial motivation for doing so.  

Here is another quotation  [ Source:   N. Altshiller–Court,  Mathematics in Fun and in 

Earnest,  pp. 110 – 112. ] : 
 

[With the introduction of points at infinity,] The propositions of projective 
geometry acquire a simplicity and a generality that they could not otherwise 
have.  Moreover, the elements at infinity give to projective geometry a degree of 
unification that greatly facilitates the thinking in this domain and offers a 



 179 

suggestive imagery that is very helpful ... On the other hand, projective geometry 
stands ready to abandon these ... whenever that seems desirable, and to 
express the corresponding propositions in terms of direction of a line ... to the 
great benefit of ... geometry. ... The extra point which projective geometry claims 
to add to the Euclidean line is [merely] the way in which projective geometry 
accounts for the property of a straight line which Euclidean geometry recognizes 
as the “direction” of the line. The difference between the Euclidean line and the 
projective line is purely verbal. The geometric content is the same. ... Such a 
change in nomenclature does not constitute an [actual] increase in the geometric 
content. 

 

Of course, one goal for the rest of this unit is to describe some uses of ideal points to 
study “real” geometrical questions.  However, this will require the development of some 
additional algebraic tools and logical concepts in the next two sections.  The geometrical 

applications themselves will be presented in Sections  5  and  6  of this unit. 

 
  

I V .3 : Homogeneous coordinates 
 
 

Generations of mathematicians are growing up 
who are on the whole splendidly trained, but 
suddenly find that, after all, they do need to 
know what a projective plane is. 
 

I. Kaplansky (1917 –  2006) 
 

During much of the 19th century there were sharp differences of opinions among some 
mathematicians about the best approach to projective geometry, with some favoring a 
strictly synthetic approach similar to that of the Elements and others advocating the 
introduction and systematic use of coordinates.  Eventually there was a consensus that 
both approaches were important to the subject, with the strengths of one often 
compensating for the disadvantages of the other.  The following quotation by Lagrange 
predates the 19th century activity in projective geometry, but it reflects the situation for 
that subject quite well. 
 

Even though analysis [coordinate or linear – algebraic methods] may have 
advantages over the old geometric methods  …  there are nevertheless 
problems in which the latter appear more advantageous. 

 

In the previous section we noted that some geometric concepts and computations can 
be greatly simplified if one has suitable points at infinity, and we discussed the process 
of adjoining such points from a largely synthetic approach.  In this section we shall 
discuss the process from an algebraic approach.  It turns out that many geometric 
computations involving points at infinity can be greatly simplified with the introduction of 
suitable coordinates, and they will be used repeatedly throughout the rest of this unit. 
 

Clearly any theories of numerical coordinates for  PPPP(RRRR
2)  and  PPPP(RRRR

3)   will be 

particularly useful if they are closely related to data from ordinary coordinate geometry.  
In particular, here are two fairly reasonable criteria we would like to have: 
 

1. Projective coordinates for ordinary points should have some close and 
obvious relation to the usual rectangular coordinates. 
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2. Projective coordinates for ideal points on ordinary lines should have some 
close and obvious relation to sets of direction numbers for the line. 

 

Our definition of direction numbers for a line is exactly the same as in elementary 

courses.  If two points  a  and  b  lie on the line  L  in  RRRR
n
,  then the ordinary coordinates 

of  b – a  are said to be a set of direction numbers for the line  L;  since there are 

many choices for the points  a  and  b,  it is clear that sets of direction numbers for a line 
are not unique, but if  u  and  v  are vectors giving direction numbers for a line then 

these vectors are nonzero multiples of each other (PROOF:   Write the line as  z  +  W  

for some  1 – dimensional vector space  W, and notice that if a and b are two points on  

L,  then  b – a  is a nonzero vector in  W;  since any two nonzero vectors in  W  are 
nonzero multiples of each other, the validity of the assertion follows).  
 

It is also important to mention two types of flexibility that we have in describing projective 
coordinates.  
 

3. Two or more lists of coordinate values may determine the same point. 
 

4. It is sometimes convenient to use more than  n  coordinates to specify a point in 

an  n – dimensional object. 
 

Spherical and rectangular coordinates for the standard unit sphere in  RRRR
3
  are excellent 

illustrations of these principles.  Spherical coordinates correspond to latitude and 
longitude, at least after a simple change of variables, and for many purposes it is useful 
to have two ways of writing a point.  For example, one gets the north and south poles if 

the latitude is  90  degrees regardless of what value one uses for the longitude.  
Similarly, if one is going eastbound around the equator, in some contexts it might be 

better to say one is at  181  degrees east of Greenwich rather than  179  degrees west 

of it.  Although the three rectangular coordinates for a point on the surface of a  2 – 
dimensional sphere carry some redundant information, it is much easier to study some 
of the symmetry properties of the sphere using rectangular rather than spherical 
coordinates (in contrast, latitudes and longitudes do not play symmetrical roles in 
specifying a point on the sphere; lines of constant longitude lie on great circles but all 
lines of constant latitude except for the equator are not great circles).  Of course, 

barycentric coordinates for a point in  RRRR
3
  are another extremely useful example of the 

fourth criterion. 
 

We shall start with the fourth criterion for constructing coordinates.  In order to specify a 

point in  PPPP (RRRR
n)  we shall use  n + 1  coordinates.   Given an ordinary line  L  in  RRRR

n
, 

suppose that a set of direction numbers for it is given by some nonzero vector  v  in  RRRR
n
. 

Then the vector   (v, 0)  ∈∈∈∈        RRRR
n

 

+
 

1  
 will be defined to be a set of homogenous 

coordinates for the point at infinity L
++++
.   Since two nonzero vectors  v  and  w  are 

direction numbers for the same line if and only if one vector is a nonzero multiple of each 

other, it follows that for each  c  ≠  0  the vectors  (cv, 0)  are also homogeneous 

coordinates for the point at infinity on the given line.   
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Similarly, if  x  is a point in  RRRR
n
,  then we take   (x, 1) ∈∈∈∈     RRRR

n
 

+
 

1
  to be one set of 

projective coordinates for the corresponding ordinary point in  PPPP (RRRR
n),  and to preserve 

uniformity with the previous paragraph also take every nonzero multiple  (cv, c).  
 

We now note two crucial properties of these definitions. 
 

Proposition 1.   Every nonzero vector in   RRRR
n

 

+
 

1
  is a set of projective coordinates for 

some point in   PPPP (RRRR
n),  and two nonzero vectors in   RRRR

n
 

+
 

1
  are projective coordinates 

for the same point if and only if one is a nonzero multiple of the other. 
 

Notation.    Because of the second clause in the proposition, the projective coordinates 
described above are almost universally called homogeneous coordinates for a point in 

the projective space   PPPP (RRRR
n). 

 

Proof.    Suppose we are given  (z, t )  ∈∈∈∈   RRRR
n

 

+
 

1
,  where  z  is a vector in  RRRR

n
  and  t  is 

a scalar such that either  z  or  t  is nonzero.  There are two cases depending upon 

whether  t  is nonzero.  If it is nonzero, then  (z, t )  represents the ordinary point  t   

–
 

1
 z, 

while if  t  =  0  then  (z, 0 )  represents the point at infinity on the ordinary line joining 

the (vector) origin  0  to  z  (recall that the latter is nonzero). 
 

By definition, if two vectors in  RRRR
n

 

+
 

1
  are nonzero multiples of each other, then they 

represent the same point in   PPPP (RRRR
n).   Conversely, suppose that the two nonzero 

vectors  (z, t )  and  (w, u)  represent the same point in   PPPP (RRRR
n).   Since the coordinates 

for ordinary points have nonzero last entries and the coordinates for ideal points have 

zero in their last entry, it follows that  t  and  u  are either both equal to zero or both not 
equal to zero.   In the second case it follows that the ordinary point represented by the 

two nonzero vectors is given by   t  

–
 

1
 z  =  u  

–
 

1
 w,  so that   z  =  t  u  

–
 

1
 w   and hence we 

have   (z, t )   =   t  u  

–
 

1
 (w, u).   We now turn to the first case, in which the final entries 

are both zero.  By the previous paragraph, we know that  (z, 0 )  and  (w, 0)  represent 

the point at infinity on the ordinary lines joining  0  to  z  and  0  to  w,  and therefore it 
follows that these two lines are either parallel or equal.  Since the origin  0  belongs to 
both, it follows that they must be equal, which in turn implies that  w  must lie in the   

1 – dimensional vector subspace of  RRRR
n
  spanned by  z;  the latter in turn means that  

w  and  z  are nonzero multiples of each other, so that the same is also true for both   

(z, 0 )  and  (w, 0) .� 
 

Corollary 2.   For  n  =  2  or  3,  there is a  1 – 1  correspondence between the points 

of   PPPP (RRRR
n)  and  1 – dimensional vector subspaces of   RRRR

n
 

+
 

1
.� 
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Lines, planes and homogeneous coordinates 
 
 

In Unit I we showed that lines and planes in  RRRR
2  

 and  RRRR
3  

 have relatively 

straightforward interpretations in terms of linear algebra, and our next objective is to 

show that lines and planes in  PPPP(RRRR
2)  and  PPPP(RRRR

3)  have similar interpretations.  The 

first results parallel the standard descriptions of lines in  RRRR
2 

 and planes in  RRRR
3 

 as sets 

of points satisfying nontrivial linear equations. 
 

Theorem 3.    A subset  L  of  PPPP(RRRR
2)  is a line if and only if it is the set of points whose 

homogeneous coordinates satisfy a nontrivial linear homogeneous equation of the form 

a1x1  +  a2 x2  +  a3 x3    =    0. 
 

Note that if one set of homogeneous coordinates for a point satisfies the equation  
 

a1x1  +  a2 x2  +  a3 x3    =    0 
 

then all  sets of homogenous coordinates satisfy the same equation. 
 

Proof.    Suppose we are given an ordinary line  L  and that it is definable by the 

nontrivial linear equation  Au + Bv + C  =  0  (nontriviality means at least one of  A ,  

B  is nonzero).  We claim that the extended line   PPPP (L)   is definable by the analogous 

homogeneous equation  A x1 + B x2 + C x3   =   0.   It follows immediately that the 

homogeneous coordinates for an ordinary point satisfy the second equation if and only if 
the point lies on  L.  Furthermore, we claim that the homogeneous coordinates of the 

ideal point  L
++++
  also satisfy the homogeneous equation.  To see this, suppose that  P1  

=  (u1,  v1)   and  P2  =  (u2,  v2)  are distinct ordinary points on  L; then  P1  –  P2  
gives a set of direction numbers for L and hence the ideal point  L

++++
  has homogeneous 

coordinates given by the vector  (u1 – u2,  v1 – v2,  0).   Since  P1   and  P2  lie on  L  

we know that 
 

A u1  +  B v1  +  C   =   A u2  +  B v2  +  C   =   0 
 

and if we subtract the second equation from the first we see that 
 

A(u1 – u2)  +  B(v1 – v2)  +  C ⋅⋅⋅⋅ 0   =   0 
 

so that the homogeneous coordinates of  L
++++
  satisfy the linear homogeneous equation in 

the claim.  Now suppose that   M 

++++
  is an arbitrary ideal point whose homogeneous 

coordinates satisfy this linear homogeneous equation, and suppose that homogeneous 

coordinates for  M
++++
  are given by  (z , w, 0).  Then we have  A z  +  B w   =    0,  and 

by the basic results from linear algebra on solutions of homogeneous linear equations 

we know that  must be a nonzero multiple of  (u1 – u2,  v1 – v2,  0),  so that both sets 

of homogeneous coordinates represent the same point and hence  L
++++
  =  M

++++
.  This 

completes the proof for extensions of ordinary lines in  PPPP(RRRR
2). 
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The proof for the ideal line is much simpler, for ideal points are the only ones which have 

homogeneous coordinates of the form  (u,  v,  0), and hence a point is an ideal point if 

and only if its homogeneous coordinates satisfy the equation  x3   =   0. 
 

To see that every set of points whose homogeneous coordinates satisfy a nontrivial 

linear equation  a1x1  +  a2 x2  +  a3 x3    =    0,  note that  (1) if either  a1  or  a2  is 
nonzero, then we have shown that set of points as above is the set of points on the 

extension of an ordinary line,  (2) if both  a1  and  a2  are zero, then  a3  must be zero so 

that the equation has the form  a3 x3   =   0,  and since this is equivalent to the equation  

x3   =   0  we see that the set of points whose homogeneous coordinates satisfy the 

original equation is just the ideal line.� 
 

Corollary 4.   A subset  L  of   PPPP(RRRR
2)  is a line if and only if there is a  2 – dimensional 

vector subspace  W  of  RRRR
3 

 such that a point   X   lies in  L     if and only if its sets of 

homogeneous coordinates are nonzero vectors of  W.  
 

As before, if one set of homogeneous coordinates lies in a particular vector subspace of 

RRRR
2 

 and  RRRR
3
,  then all  sets of homogenous coordinates lie in this subspace. 

 

Proof.    We know that  L     is a line if and only if its homogeneous coordinates satisfy a 

nontrivial linear homogeneous equation of the form  a1x1  +  a2 x2  +  a3 x3    =    0, 

and hence the points on  L     are those whose homogeneous coordinates are the 

nonzero vectors in the vector subspace  W  of solutions for that equation.  Therefore, if  

L  is a line then it satisfies the conclusion of the corollary.   Conversely, if  W  is a  2 – 

dimensional vector subspaces of  RRRR
3
  then it is the set of solutions for some nontrivial 

linear homogeneous equation of the form  and thus the set of points in  PPPP(RRRR
2)  whose 

homogeneous coordinates lie in   W   are precisely the points on the line defined by the 

equation  a1x1  +  a2 x2  +  a3 x3    =    0.� 
 

There are analogous results for planes in  PPPP(RRRR
3),  and the proofs are entirely similar. 

 

Theorem 5.    A subset  ΠΠΠΠ     of   PPPP(RRRR
3)  is a plane if and only if it is the set of points 

whose homogeneous coordinates satisfy a nontrivial linear homogeneous equation of 

the form  a1x1  +  a2 x2  +  a3 x3  +  a4 x4    =    0. 
 

Again, if one set of homogeneous coordinates for a point satisfies the equation  
 

a1x1  +  a2 x2  +  a3 x3  +  a4 x4    =    0 
 

then all sets of homogenous coordinates satisfy the same equation. 
 

Proof.    We shall only indicate the points where the argument is not analogous to the 
proof of the previous theorem; these all involve extended ordinary planes for which at 

least one of the coefficients  a1 ,  a2 ,  a3   is nonzero.   Once again we know that the 

ordinary points on the extended ordinary plane are simply those whose homogeneous 

coordinates satisfy the equation  a1x1  +  a2 x2  +  a3 x3  +  a4 x4    =    0,  so we 
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need to check that the ideal points on this plane are precisely those whose 
homogeneous coordinates also satisfy this equation. 
 

Let  Q  be the ordinary plane under consideration, and suppose it has the form  v  +  W  

for some vector  v  and some  2 – dimensional vector subspace  W.   Then the direction 

numbers for all lines joining two points in  Q  must lie in  W, and conversely every 
nonzero vector  w  in  W  is a set of direction numbers for some line  M  in  Q; 

specifically, one can take  M  to be the line joining  x  to  x  +  w.   By the same sort of 
argument used in the planar case, if we are given a line  L  in the ordinary plane  Q  and 

it has direction numbers given by  (p1,  p2,  p3),  then we know that the direction 

numbers satisfy  a1p1  +  a2 p2  +  a3 p3    =    0  and homogeneous coordinates for 

the ideal points  L
++++
  are given by  (p1,  p2,  p3,  0).   

 

Thus we have shown that the ideal points on the extended plane  PPPP (Q)  all have 

homogeneous coordinates which satisfy the linear homogeneous equation we have 
associated to  Q.   In order to conclude the argument we need to show that if an ideal 
point has homogeneous coordinates satisfying the associated linear homogeneous 

equation   a1x1  +  a2 x2  +  a3 x3  +  a4 x4    =    0   then M
++++
 lies in the extended 

plane  PPPP (Q).   Now the set of solutions for  a1x1  +  a2 x2  +  a3 x3    =    0  is a   

2 – dimensional vector subspace of  RRRR
3  

 which contains the vector subspace  W  

described above,  and therefore it must be equal to  W.  Therefore, if we are given an 

ideal point with homogeneous coordinates  (p1,  p2,  p3,  0)  which satisfy the basic  

linear homogeneous equation under consideration, then we know that  (p1,  p2,  p3)  

must lie in  W,  which means that this  3 – dimensional vector must give the direction 

numbers for some line  N  in  Q,  so that   M
++++
  =  N

++++    
  where  N  is a line in  Q.� 

 

The proof of the next result is entirely parallel to the argument for the previous corollary. 
 

Corollary 6.   A subset  ΠΠΠΠ  of   PPPP(RRRR
3)  is a plane if and only if there is a  3 – 

dimensional vector subspace   W  of     RRRR
4
  such that a point  X  lies in ΠΠΠΠ  if and only if 

its sets of homogeneous coordinates are nonzero vectors of   W.� 
 

The next result is analogous to the two preceding corollaries, but it requires somewhat 
more work to prove.  A reader who wishes to skip the proof may do so without loss of 
continuity or missing anything that will be needed later. 
 

Theorem 7.   A subset  L of   PPPP(RRRR
3)   is a line if and only if there is a  2 – dimensional 

vector subspace  W  of     RRRR
4
 such that a point  X  lies in L if and only if its sets of 

homogeneous coordinates are nonzero vectors of  W. 
 

Before proving this result, we notice that it combines with a preceding corollary to yield 

the following uniform statement: 
 

Summarizing statement.  If   n  =  2  or  3,  then a subset  L     of  PPPP (RRRR
n)  is a line if 

and only if there exists  a   2 – dimensional vector subspace  W  of   RRRR
n

 

+
 

1
  such that a 
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point   X   lies in  L         if and only if its sets of homogeneous coordinates are nonzero 

vectors of  W.� 
 

Proof of Theorem 7.   We shall first prove that for each line  L  there is a  2 – 
dimensional vector subspace  W  with the desired properties.  The proof splits into two 
cases, depending upon whether the line is an ordinary line or an ideal line. 
 

Suppose first that  L  is the ordinary line containing the two distinct ordinary points  a  

and  b  in  RRRR
3
,  and consider the associated vectors  (a, 1)  and  (b, 1)  in  RRRR

4
.   We 

claim these vectors are linearly independent; since they are both nonzero it suffices to 
check that neither is a multiple of the other.   If they were, then one would have an 

equation of the form  (a, 1)   =  c (b, 1)  where   c   is a nonzero scalar.   Since   c (b, 1)   

=   ( c b, c),  this implies  c  =  1,  so that the two vectors must be equal and therefore   

a  =  b,  contradicting our choices of these points. 
 

Let  W  be the  2 – dimensional subspace spanned by  (a, 1)  and  (b, 1).  Then  W  
contains homogeneous coordinates for every ordinary point of  L  because each such 

point can be written in the form   x   =   ta  +  (1 – t) b  for some scalar t , so that its 

homogeneous coordinates satisfy  (x, 1)   =   t (a, 1)  +  (1 – t ) (b, 1).  Also,  W  

contains homogeneous coordinates the ideal point  L
++++
  because the latter has 

homogeneous coordinates  
 

(a – b, 0)    =    (a, 1) – (b, 1) . 
 

We now need to show that  W  does not contain homogeneous coordinates for any other 
ordinary or ideal point.  Suppose we are given an arbitrary linear combination of the form  

w   =   u(a, 1)  +  v(b, 1)  where  u  and  v  are scalars such that not both are equal to 

zero.  There are two cases depending upon whether  u  +  v  is equal to zero or not 

equal to zero.  If  u  +  v  is nonzero then we know that  (u + v) 

–
 

1
 w  also represents 

the same point and that if we write  w  =  (z, u + v),  then  (u + v) 

–
 

1
 w  satisfies the 

following equation:  
 

( ) ( )1,1,1,
11
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But this means that  w  is a set of homogeneous coordinates for the point  (u + v) 

–
 

1
 z  

and the latter is a point on the line  L  joining  a  to  b.   Now suppose that   u + v   is 

equal to zero, so that   v   =   – u  and both are nonzero.  In this case we have  
 

w    =   u (a, 1)  –  u (b, 1)    =   (u a – u b, 0) 
 

which means that  w  represents the ideal point on the line  L.   
 

Suppose now that  L  is an ideal line in  PPPP (Q)  for some ordinary plane  Q  in  RRRR
3
.   As in 

the proof of the previous theorem,  express  Q  as   z + W  for some  2 – dimensional 

vector subspace  W  of  RRRR
3
.  The proof of that theorem then shows that the points of 

LLLL∞∞∞∞ (Q)   are precisely those points whose homogeneous coordinates have the form   
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(w, 0)  for some nonzero vector  w  in  W.  If we convert this into a statement involving 

linear homogeneous equations, we see that  LLLL∞∞∞∞ (Q)  consists of all points whose 

homogeneous coordinates satisfy   a1x1  +  a2 x2  +  a3 x3  +  a4 x4    =    0    

defining the extended ordinary plane  PPPP (Q)  and together with the equation   x4   =   0  

which defines the ideal plane.  In the first equation we know that at least one of the 

coordinates  a1 ,  a2 ,  a3  is nonzero, so these equations are linearly independent and 

hence the vector subspace of solutions for this system will be  2 – dimensional.  Since 

this solution set contains the  2 – dimensional subspace  W, it must be equal to  W,  

and therefore the ideal line  PPPP (Q)  is the set of points whose homogeneous coordinates 

are nonzero vectors in  W.   
 

This completes the proof that every line is describable as indicated in the theorem. 

Conversely, if we are given a  2  –  dimensional subspace  W,  we have to show that it 
corresponds to a line.  There are two cases, depending upon whether  W  contains any 
vectors whose fourth coordinates are nonzero.  If it does not,  then every vector in  W  

has the form  (u, 0), where  u  lies in some  2 – dimensional subspace  V  of  RRRR
3
,  and 

by the immediately preceding paragraph we see that the set of points with homogeneous 

coordinates in  W  is just the ideal line  LLLL∞∞∞∞ (V)   of the ordinary plane determined by  V. 
 

Finally, suppose that the  2 – dimensional subspace  W  contains at least one vector 
whose fourth coordinate is nonzero.  If we multiply such a vector by the inverse of its 

fourth coordinate, we see that  W  contains a vector of the form  (v, 1)  where  v  is some 

vector in  RRRR
3
.   Since  W  is 2 – dimensional, it also contains a second vector of the 

form  (w, t )  that is not a scalar multiple of  (v, 1) ;  if  t  is nonzero, then  ( t
 –

 
1

 w, 1)  will 

also be a vector in  W  which is not a scalar multiple of  (v, 1),  and hence by earlier 
parts of this argument we know that the points whose homogeneous coordinates lie in  

W  are the points on the projective extension of the ordinary line joining  v  and  t
 –

 
1

 w.  

On the other hand, if   t  =  0  then we claim that   (v, 1) + (w, 0)  =  (v + w,  1)  is not 

a scalar multiple of  (v, 1) ; if we know this, then it will follow that the points whose 
homogeneous coordinates lie in  W  are merely the points on the projective extension of 

the ordinary line joining  v  and  v + w.   To prove the claim, observe that if we have   

(v + w, 1)   =   c(v, 1)  for some scalar  c  then we must have  c  =  1  because the last 

coordinates are equal, and hence we must also have  v  =  v + w.   However, since we 

know that the vector  (w, 0)  is not a scalar multiple of  (v, 1) , it follows that  (w, 0)  and 

hence  w  must be nonzero, which contradicts the conclusion  v + w  =  w   from the 

preceding sentence.  It follows that  (v + w, 1)  is not a scalar multiple of  (v, 1) ,  and as 

noted above this completes the proof.� 
 

 

Application to collinear and coplanar points 
 
 

Homogeneous coordinates yield very simple determinant tests for three points in  

PPPP(RRRR
2)  to be collinear and for four points in  PPPP(RRRR

3)  to be coplanar. 
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Proposition 8.    (1)   Suppose that   X,  Y and  Z  are distinct points in  PPPP(RRRR
2)  with 

homogeneous coordinates given by  a,  b  and  c  respectively, and let  [a, b, c]  denote 

the determinant of the  3 × 3  matrix whose columns are given by  a,  b  and  c.  Then  

X,  Y  and  Z  are collinear if and only if   [a, b, c]  =  0. 
 

(2)   Suppose that   X,  Y,  Z   and   W   are distinct points in  PPPP(RRRR
3)  with homogeneous 

coordinates given by  a,  b,  c  and  d respectively, and let  [a, b, c, d]  denote the 

determinant of the   4 × 4   matrix whose columns are given by  a,  b,  c  and  d.  Then   

X,  Y,  Z   and  W  are coplanar if and only if   [a, b, c, d]   =   0. 
 

Proof.   For the first part, note that the given three points in   PPPP(RRRR
2)   are collinear if and 

only if their homogeneous coordinates  a,  b  and  c  span a  2 – dimensional subspace, 

and this is true if and only if the three vectors  are linearly dependent.   Since the latter is 

equivalent to the equation  [a, b, c]   =  0,  it follows that the original points are collinear 

if and only if this equation holds. 
 

The proof of the second part is similar.   The given four points in  PPPP(RRRR
3)  are coplanar if 

and only if their homogeneous coordinates  a,  b,  c  and  d  span a  3 – dimensional 

subspace, and this is true if and only if the four vectors  are linearly dependent.  Since 

the latter is equivalent to the equation  [a, b, c, d]   =  0,  it follows that the original 
points are coplanar if and only if this equation holds.� 
 

Important special cases.    Of course, one can apply these directly to ordinary points 
with their usual rectangular coordinates because an ordinary point with rectangular 

coordinates  (x1, … , xn)  has homogeneous coordinantes given by  (x1,  … , xn, 1).� 
 

 

Incidence properties of projective spaces 
 
 

In Section I I.1 of the notes we listed several incidence axioms describing some of the 

most basic facts about lines and planes in  RRRR
2   

and   RRRR
3
.  Since we have used the same 

names for certain subsets of  PPPP(RRRR
2)  and  PPPP(RRRR

3),  it is natural to ask if these new 

concepts of lines and planes also satisfy these simple conditions.  Our objective here is 
to show that they do, but they also have some properties that are markedly different from 
those of Euclidean lines and planes.  With the material we have developed, all the proofs 
turn out to be fairly simple. 
 

Proposition 9.  (Verification of Property I – 1)   Let   n  =  2  or  3.   Given any two 

distinct points in   PPPP(RRRR
n),  there is exactly one line that contains them.  

 

Proof.    Let  X  and  Y  be the distinct points, and suppose that their homogeneous 

coordinates are the nonzero vectors in the  1 – dimensional vector subspaces  V  and  

W   in   RRRR 

n
 

+
 

1
.  Let   U   be the vector subspace given by the linear sum   V + W ;  since  

X  and  Y  are distinct points, it follows that no nonzero vector in  V  is a multiple of a 
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vector in  W  and vice versa, so that  U  contains a basis of two vectors (one from  V  

and one from  W), so that it is  2 – dimensional.  Let  L  be the line in  PPPP(RRRR
n)  

determined by  U.  Then by construction we know that  X  and  Y  both lie on  L.  

Suppose now that  L′′′′  is an arbitrary line containing  X  and  Y,  and let  U′′′′  be its 

associated  2 – dimensional subspace.  If  v  and  w  are nonzero vectors in  V  and  W  

respectively, it follows that  v  and  w  must also lie in  U′′′′,  so that  U  is contained in  U′′′′.   

Since we know that  U′′′′  is   2 – dimensional it follows that  U  =  U′′′′  and hence  L  =  

L′′′′.� 
 

Proposition 10.  (Verification of Property I – 2)   Let  n  =   2  or  3.  Then every line 

in   PPPP(RRRR
n)  contains at least two points.  

 

Proof.    Let  L  be a line in  PPPP(RRRR
n),  and let  U  be the  2 – dimensional vector 

subspace of  RRRR    

n
 

+
 

1
   corresponding to  L.   If  { v, w }  forms a basis for  U,  let  X  and  

Y  be the points in  PPPP(RRRR
n)  corresponding to  v  and  w  respectively.  It follows that  X  

and  Y  are distinct points on the line  L.� 
 

The same argument employed in Section I I.1 yields the following simple fact about lines 
in projective spaces. 
 

Proposition 11.   Let  n  =   2  or  3.  Then two distinct lines in   PPPP(RRRR
n)   have at most 

one point in common.� 
 

We now proceed to the axioms which mainly involve  3 – dimensional space(s). 
 

Proposition 12.  (Verification of Property I – 3)   Given three distinct points in  

PPPP(RRRR
3)  that are not contained in a line, there is exactly one plane in  PPPP(RRRR

3)  that 

contains them.  
 

Proof.   Let  X,  Y  and  Z  be the three noncollinear points, and suppose that   u,  v  and  
w  are sets of homogeneous coordinates for  X,  Y  and  Z  respectively. 
 

The noncollinearity hypothesis implies that there is no   2 – dimensional vector 
subspace containing all three vectors; if these vectors were linearly dependent, then 
there would be such a vector subspace, so it follows that  u,  v  and  w  must be linearly 

independent.  Hence they span a  3 – dimensional subspace  S,  and if  P  is the plane 

corresponding to  S  then the three original points  X,  Y  and  Z  must lie in  S.   

Conversely, if  Q  is a plane containing  X, Y  and  Z  and  T  is the  3 – dimensional 

vector subspace corresponding to  Q,  then it follows that  u,  v  and  w  all lie in  T,  so 

that  T  must contain  S.   Since both are  3 – dimensional, they must be equal and 

therefore we have  P  =  Q.���� 
 

Proposition 13.  (Verification of Property I – 4)   Let  n  =  2  or  3.  Then every 

plane in   PPPP(RRRR
n)   contains at least three distinct points.  
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Proof.   Let  P  be the plane, let  W  be the  3 – dimensional vector subspace of  RRRR
4
 

corresponding to  P,  let  { a, b, c }  be a basis for  W,  and take the points  X,  Y  and  Z 

represented by  a,  b  and  c  respectively.  Then  X,  Y  and Z  are three distinct points 
of  P.���� 
 

Proposition 14.  (Verification of Property I – 5)   If  L  is a line in  PPPP(RRRR
3)  and two 

distinct points  A,  B  on  L  also lie on the plane  P  in  PPPP(RRRR
3),  then all points of the line  

L  are contained in  P.  
 

Proof.   Let  P  be the plane, let   W  be the  3 – dimensional vector subspace  RRRR
4
 

corresponding to  P, let  u  and  v  be homogeneous coordinates for  A  and  B  

respectively; then  u  and  v  span a  2 – dimensional subspace  U  which must be 

contained in  W.  By the proof of the first incidence property we know that a point lies on  

AB  if and only if its homogeneous coordinates lie in  U.   Therefore if  X  lies on  L, then 
its homogeneous coordinates lie in  U  and hence also in  W,  so that  X  must also lie in 
the plane  P.���� 
 

Proposition 15.  (Verification of Property I – 6)   If two distinct planes in  PPPP(RRRR
3)  

have one point in common, then their intersection is a line.  
 

Proof.   Let  P  and  Q  be the planes, and let  V  and  W  be the  3 – dimensional vector 

subspace  RRRR
4
  corresponding to  P  and  Q.  By elementary linear algebra we know that 

 

dim (V  ∩∩∩∩  W)  ≥  dim V  +  dim W  –  dim RRRR
4
   =   3 + 3 – 4   =  2 

 

and since the intersection is contained in the  3 – dimensional subspaces  V  and  W  it 

follows that the dimension of  V  ∩∩∩∩  W  is either  2  or  3 ;  if the latter holds, then we 

have   V  =  V  ∩∩∩∩  W  =  W,  which means that  P  and  Q  are not distinct.  Therefore 

the intersection is a  2 – dimensional vector subspace, so that the set of points 

represented by nonzero vectors in   V  ∩∩∩∩  W  —  which is just the set of points in the 

intersection  P  ∩∩∩∩  Q  —  must be a line.� 
 

Notice that we have really shown something that is much stronger than property I – 6: 
 

Theorem 16.    If  P and  Q are distinct planes in  PPPP(RRRR
3), then their intersection is a 

line.� 
 

Of course, the corresponding statement for planes in Euclidean  3 – dimensional space 

is false because there are many pairs of parallel planes.   We should note that if  Q  and  

Q′′′′  are parallel ordinary planes in  RRRR
3
,  then the intersection of the extended planes    

PPPP (Q)  and  PPPP (Q′′′′ )  in  PPPP(RRRR
3)  is their common line at infinity  LLLL (Q)  =  LLLL (Q′′′′).   

Likewise, if  Q  is an extended ordinary plane and  PPPP(∞∞∞∞)  is the ideal plane, then  PPPP (Q)  

and  PPPP(∞∞∞∞)  meet in the ideal line  LLLL∞∞∞∞ (Q).� 
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In particular, there are no “parallel planes” in  PPPP(RRRR
3),  and the next result shows that 

there are also no “parallel lines” in  PPPP(RRRR
2). 

 

Theorem 17.    Let  n  =   2  or  3,  and let  L  and  M  are distinct coplanar lines in 

PPPP(RRRR
n).  Then  L  and  M  have a point in common.� 

 

Note.   The assumption that the lines be coplanar cannot be dropped.  For 

example, if  e1,  e2,   and   e3  are the standard unit vectors in  RRRR
3
, then the extensions of 

the two ordinary lines   0 e1   and   e2 e3   do not have any ordinary or ideal points in 
common (checking this is left to the exercises). 
 

Proof.   Let  P  be the plane containing  L  and  M,  let   W  be the  3 – dimensional 

vector subspace corresponding to  P,  and let  U  and  V  be the  2 – dimensional vector 

subspaces corresponding to  L  and  M  respectively.  Then  U  and  V  are contained in  

W  and hence their linear sum is too (in fact, one has  W  =  U + V  but we shall not 

need this).   As before, by elementary linear algebra we know that 
 

dim (U  ∩∩∩∩  V)   ≥   dim U  +  dim V  –  dim W    =    2 + 2 – 3    =   1 
 

and therefore there is a nonzero vector  z  in  U  ∩∩∩∩  V.  If  X  is the point represented by  

z,  it follows that  X  lies on both  L  and  M.� 
 

Of course, if we have two extensions of ordinary parallel lines, then these extended lines 
will meet at the ideal point associated to both of the original parallel lines.  Furthermore, 
the ideal line of the plane meets an extended ordinary line at the latter’s ideal point.� 
 

One can now prove the following results using exactly the same arguments presented in 

Section  I I.1. 
 

Proposition 18.   If  L  is a line and  X  is a point not on  L,  then there is a unique plane  
P  which contains  X  and (all the points of)  L.���� 
 

Proposition 19.   If  L  and  M  are distinct lines that have one point in common, then 
there is a unique plane  P  which contains both  L  and  M.����  
 

In other words, two intersecting lines in projective space determine a unique plane. 
 

  

I V .4 : Projective duality 
 
 

By the principle of duality … geometry at one 
stroke is doubled in extent with no expenditure 
of extra labor. 
 

E. T. Bell (1883 – 1960), Men of Mathematics 
  

Interior decorators often use a mirror covering an entire wall to make a room look larger.  
Duality principles in mathematics are conceptual mirrors which similarly broaden several 
parts of mathematics, taking every valid result in an area and yielding an equally valid 
mirror image (or dual version) of it.  Projective geometry has important duality 
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properties that were formulated explicitly and used very effectively by Poncelet and 
Gergonne.    
 

Our treatment of duality in projective geometry is aimed at giving a rapid introduction to 
the most basic aspects of the idea; more comprehensive (and generally more elegant) 
accounts are given in virtually every book on projective geometry.  
 
 

An example of duality 
 
 

The operation which sends a matrix to its transpose has a curious significance.  Since 

the rows and columns of the transposed matrix  
T
A  are respectively the columns and 

rows of the original matrix  A,  there are situations where one can use a fact about rows 
and columns to prove a fact about columns and rows.  This depends heavily on some 
basic properties of the transposition operation: 
 

Transposition of matrices satisfies the algebraic identities  
T
(A + B)  

=  
T
A  + 

T
B,  

 T
(cA)  =  c(T

A),   T(AB)  =  
 T

B 
T
A, and

   T
I  =  I  

If   I  is an identity matrix.  Furthermore, the transpose of a 
transposed matrix is just the original matrix. 

 

Given a statement about matrix algebra, the dual statement about matrices is formed 
by  (1) switching the roles of rows and columns for all the matrices which appear, and  
(2) reversing the orders of all matrix multiplications.  We then have the following basic  
metamathematical  (MET – a – mathematical) fact (the highlighted word means “about 
mathematics”): 
 

Metatheorem.  A statement about matrix algebra is true if and only if its dual statement 
is true. 
 

Explanation.  Given a statement about matrices, apply it to the transposed matrices.  If 
we do so then rows become columns and vice versa, and the orders of multiplications 
are reversed.  Since the original statement is true and every matrix is the transpose of 

some other matrix, the original statement applied the transposed matrices — which is 

precisely the dual statement — must be true as well.  Similarly, if the dual statement is 

true, then its double dual is also true.  But the double dual is just the original statement, 

so this means the original statement is true.� 
 

Example.    The algebraic statement that  B  and  C  are  m × n  and  n × m  matrices 

such that  CB  =  I  dualizes to an algebraic statement that  B  and  C  are  n × m  and  

m × n  matrices such that  BC  =  I.  Consider now the following statement: 
 

If the rows of a matrix  B  are linearly independent, then 

there is a matrix  C  such that  BC  =  I . 
 

If we apply the previous rules, we obtain the dual statement: 
 

If the columns of a matrix  B  are linearly independent, then 

there is a matrix  C  such that  CB  =  I. 
 

Therefore, if we can prove one of these statements, we automatically know the other is 
true.  In this particular example it is not difficult to prove each statement separately 
without appealing to the duality principle, but it is at least conceivable that there will be 
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more difficult theorems for which dualization is at least a labor saving device and at best 
yields new conclusions that might not have been otherwise easy to anticipate. 
 
 

Duality in projective spaces 
 
 

Before proceeding to the main topic of this section, we mention a default convention that 

has been at least implicit in these notes:   
 

For many computational purposes, we are viewing 

vectors in  RRRR
n 

 as  n × 1  matrices (also known as 

column vectors). 
 

In particular, this is useful if we are computing with linear transformations, for it allows us 

to view a linear transformation  L  from  RRRR
n
   to   RRRR

m
  as being given an  m × n  matrix  

A  such that for every vector  v  in  RRRR
n
  we have  L(v)  =  Av.   For the rest of this unit 

we shall use this convention very explicitly. 
 

Homogeneous coordinates for lines and planes.  We have seen that lines in  PPPP(RRRR
2) 

and planes in  PPPP(RRRR
3)  are describable as sets of points whose homogeneous 

coordinates satisfy a nontrivial linear homogeneous equation in three or four variables.  
The following result formalizes this fact.   
 

Theorem 1.    Let  n  =  2  or  3,  and suppose that  H  is a line in  PPPP(RRRR
2)   if   n  =  2  

or that  H  is a plane in  PPPP(RRRR
3)  if  n  =  3.  Then there is a nonzero  1 × n  row vector 

a such that a point  Y  belongs to  H  if and only if a set  x  of homogeneous coordinates 

for  Y  satisfies the matrix algebra equation  a v  =  0  (where we identify  1 × 1  

matrices with their unique scalar entries).  Furthermore, two nonzero row vectors define 

the same subset  H  if and only one is a nonzero multiple of the other. 
 

As usual, we note that if one set  x  of homogeneous coordinates for  Y  satisfies the 

matrix algebra equation  a x  =  0,  then the same equation is satisfied by every set of 
homogeneous coordinates for  Y. 
 

In the setting above, we shall say that any nonzero row vector which satisfies the 
condition in the theorem is a set of homogeneous coordinates for  H.   
 

Proof.   We know that  H  is definable as the set of points whose homogeneous 
coordinates satisfy a nontrivial linear homogeneous equation of the form  
 

a1x1  +  …  +  an + 1  x n + 1    =    0 
 

in which at least one of the coefficients  ak  is nonzero.  We can take the nonzero  1 × n 

row vector  a  so that its entries are given by these coefficients.  If   c   is a nonzero 

constant then clearly the equation   ca1x1 + … + can + 1  x n + 1   =   0   is equivalent to 

the equation displayed above, so if  b  =  c a   for some nonzero scalar  c  then both  a   
and  b  define the same subset  H.   Conversely, suppose that  a  and  b  define the 

same subset  H,  and let  W be the  n – dimensional vector subspace of  RRRR 

n
 
+

 
1
  which 
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corresponds to  H.  Then the only way that  W  can be the set of solutions for both 

equations  a x  =  0  and  b x  =  0  is if  a  and  b  are nonzero multiples of each other, 

and therefore the row vector  a  is uniquely defined up to multiplication by a nonzero 

scalar.� 
 

Example.    Suppose that  X  and  Y  are distinct points in  PPPP(RRRR
2)  and that the vectors 

a  and  b  in  RRRR
3 

 are homogeneous coordinates for these points.  If  L  is the line 

containing  X  and  Y, then homogeneous coordinates for  L  are given by the 

transpose of the cross product  
T

 (a × b) ;  this is true because X  ≠  Y  implies  a  
and  b  are linearly independent, so that the cross product is nonzero and perpendicular 
to both  a  and  b. 
 

The preceding theorem has an interesting consequence which is fundamental to 
projective geometry. 
 

Theorem 2.  (Coordinate Duality Principle)   Let  n  =  2  or  3,  and define  PPPP(RRRR
n)####

  

to be the set of all lines in  PPPP(RRRR
n)  if  n  =  2  and the set of all planes in  PPPP(RRRR

n)  if   
n  =  3  (we shall generically call the lines or planes hyperplanes).   Then there is a   

1 – 1  correspondence  ππππ  from  PPPP(RRRR
n)  to  PPPP(RRRR

n) 

####
  such that a point  X  in  PPPP(RRRR

n)  

lies on a hyperplane  H  in  PPPP(RRRR
n) 

####
  if and only if the point  ππππ 

–
 

1
 [H]  in  PPPP(RRRR

n)  lies on 

the hyperplane  ππππ [X]  in PPPP(RRRR
n) 

####
. 

 

Proof.    Given a point  X, let  v  be a set of homogeneous coordinates for  X  and take  
H  to be the line or plane whose coordinates are the transpose of  v.  Although this 
involves choosing a set of homogeneous coordinates, the line or plane  H  does not 
depend upon the choice, for every other set of homogeneous coordinates for  X  is given 

by  c a  for some nonzero scalar  c  and the transposes of  a  and  c a  define the same 

object  H  in  PPPP(RRRR
n) 

####
 .  Since transposition determines a  1 – 1  correspondence from 

column vectors to row vectors which preserves all vector space operations, it follows that 

the map  ππππ  defines a  1 – 1  correspondence from  PPPP(RRRR
n)   to  PPPP(RRRR

n) 

####
.  

 

We shall now verify the extra condition on  ππππ  stated in the theorem.  Given X ∈∈∈∈        PPPP(RRRR
n) 

and  H ∈∈∈∈     PPPP(RRRR
n) 

####
,  let  b  and  a  denote homogeneous coordinates for  X  and  H 

respectively, so that  X ∈∈∈∈    H  if and only if  b a  =  0.  By construction we know that  ππππ [X] 

and  ππππ 

–
 

1
 [H]   have homogeneous coordinates given by  

T
b  and  

T
a  respectively, and 

therefore  X ∈∈∈∈    H  implies  
 

T
a 

T
b   =   

T(b a)   =   
T
0  =   0 

 

so that  ππππ 

–
 

1
 [H]  ∈∈∈∈        ππππ [X] .  Conversely, if the latter holds then   0  =   

T
a 

T
b   =   

T(b a) 

implies  b a  =  0,  so that  X  ∈∈∈∈        H.� 
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In effect, the mapping  ππππ  sends a point in  PPPP(RRRR
n)  to a line or plane, and the set of all 

points on a line  H  (n  =  2)  or plane  H  (n  =  3)  is sent to the set of all lines or 

planes which pass through the point  ππππ 

–
 

1
 [H] .   It is natural to ask what happens to the 

set of all points on a line  L  in  PPPP(RRRR
3)  under the mapping  ππππ.   In order to do this, we 

need some input from linear algebra. 
 

Lemma 3.    Let  W  be a  k – dimensional vector subspace of   RRRR
m

,  and let  V  be the 

set of all vectors that are perpendicular to every vector in  W.  Then  V  is an  (m – k) – 

dimensional vector subspace of  RRRR
m

.  Furthermore,  W  is the set of all vectors that are 

perpendicular to every vector in V. 
 

Proof.    Let   w1, … , wk   be a basis for  W.  Then a vector  x  belongs to  V  if and only 

if  x  is perpendicular to each of the vectors  w j .   To see this, observe that if  x  is 
perpendicular to every vector in  W  then it will be perpendicular to every vector in the 

basis, and conversely if   w j  · x  =  0  for all   j,  then we can express  w ∈∈∈∈    W   as a 

linear combination  w  =  c1w1 + … + ckwk    for suitable scalars  w j,  and hence we 

have  
 

w · x   =   (c1w1 + … + ckwk) · x   =   c1 (w1 · x) + … + ck (wk · x)   =   0 
 

so that  x ∈∈∈∈    V.  It follows that  V  is the solution set for a system of  k  independent linear 

homogeneous equations, and therefore  V  is a vector subspace whose dimension is 

equal to  (m – k).   
 

To prove the statement in the final sentence of the theorem, let  U  be the set of vectors 
that are perpendicular to every vector in  V ; then the preceding discussion shows that  U  

is a vector subspace whose dimension is equal to  k .  However, we also know that  U  

contains  W  and  W  is also a vector subspace whose dimension is equal to  k ,  and 

thus we have  U  =  W.� 
 

We are now ready to state and prove a result on what happens to lines in  PPPP(RRRR
3)  under 

the mapping  ππππ.   This proof is more delicate than the others in this section, and for most 

purposes it is enough to understand the statement of the result (including the alternate 
version following the proof). 
 

Proposition 4.   Let  n  =  3,  and let  L  be a line in  PPPP(RRRR
3).   Then the set of all planes 

expressible as  ππππ[X],  where  X  ranges over all the points of  L,  is sent to the set of all 

planes which contain some (possibly different) line  M.  Conversely, if  M  is a line in 

PPPP(RRRR
3)  and  E M  is the set of all planes in  PPPP(RRRR

3)  which contain the line  M, then the 

image of  E M  under  ππππ 

– 1
  is the set of all points on some (possibly different) line  L. 

 

Proof.    If  L  is a line, then we know there is a   2 – dimensional vector subspace  W  

of  RRRR
4
  such that  X  lies in  L  if and only if its homogeneous coordinates lie in  W.  Let  
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V  be the vector subspace of all  x ∈∈∈∈        RRRR
4
  such that  x  is perpendicular to every vector 

in  W ; by the lemma we know that  V  is also  2 – dimensional.   
 

Let  M  be the line in  PPPP(RRRR
3)  which corresponds to  V, suppose that  X  is a point on  L, 

and let  a  be a set of homogeneous coordinates for  X; since  X  ∈∈∈∈        L,  it follows that   

a ∈∈∈∈ W.   The conditions on  W  and  V  imply that  0  = a · v = 
T

 a v  for all  v  ∈∈∈∈        V ; 

therefore if  Y  is a point in  M  (so that its homogeneous coordinates lie in V),  we know 

that  Y  lies on the plane  ππππ[X] ,  and hence  M  is contained in  ππππ[X].   Conversely, 

suppose that we have a plane  H  which contains  M ;  let  u  be a set of homogeneous 

coordinates for the plane  H.   Then u v  =  0 for all v  ∈∈∈∈        V,  and by the Lemma we 

know that  
T

 u ∈∈∈∈ W.  If  X  is the point represented by  
T

 u,  then it follows that  X  ∈∈∈∈        L  

so that  H  =  ππππ[X] , where  X ∈∈∈∈ L.  This proves the first part of the theorem. 
 

We now consider the second assertion in the theorem.  By the argument at the end of 

the preceding paragraph, we know that  ππππ 

–
 
1
  sends the set of all planes  H  containing a 

line  M  into the set of all points  X  contained in a possibly different line  L.  Similarly, the 

argument at the beginning of the preceding paragraph shows that if  X  =  ππππ 

–
 
1

 [ H]  is a 

point of  L,  then  H  contains the line  M.   This completes the proof of the second part of 

the theorem.� 

Another way of stating the conclusion of the proposition is that  ππππ     and  ππππ 

–
 
1
 map sets of 

points on a given line to sets of planes containing a (possibly different) given line and 
vice versa. 
 

The preceding results lead to the following general Duality Principles. 
 

Metatheorem 5.  (Duality principle for the projective plane)   Every theorem about 

points and lines in   PPPP(RRRR
2)   remains true if one interchanges the words “point” and 

“line” as well as the phrases “point lies on a line”  and “line contains a point.” 
 

Explanation.    Many of the results of this section on  PPPP(RRRR
2)  can be summarized in the 

table on the next.  In each row of this table we have the following: 
 

(a)  the geometric concept in the first column translates into the algebraic data in the 
second by interpreting everything in terms of coordinates, 

 

(b)  the data in the second column translate into the data in the third column by 
switching the roles of row and column vectors, 

 

(c)  the algebraic data in the third column correspond to the geometric data in the 
fourth column by translating algebraic language into geometric language by 
means or coordinates. 
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Geometric 
Concept 

 

 

Algebraic 

Counterpart 

 

Transposed Version 

 

Dual Geometric 

Interpretation 

 
Line 

1 – dimensional 

subspace of row 
vectors 

1 – dimensional 

subspace of column 
vectors 

 
Point 

 
Point 

1 – dimensional 

subspace of column 
vectors 

1 – dimensional 

subspace of row vectors 

 
Line 

 
A point lies on a 
line 

The product of a 
column vector left 
multiplied by a row 
vector is zero 

The product of a row 
vector left multiplied by 
a column vector is zero 

 
A line contains a 
point 

 
A line contains 
a point 

The product of a row 
vector left multiplied 
by a column vector is 
zero 

The product of a column 
vector left multiplied by 
a row vector is zero 

 
A point lies on a 
line 

 

 

A geometric statement involving concepts in the first column will be true if and only if its 
coordinate translation into the algebraic terms of the second column is true.  Likewise, 
the properties of matrix transposition show that a statement involving concepts in the 
second column will be true if and only if the statement involving the matching concepts in 
the third column is true.  Finally, an algebraic statement involving concepts in the third 
column will be true if and only if its coordinate translation into the geometric terms of the 
fourth column is true.  Combining these, we see that a statement involving the geometric 
concepts in the first column will be true if and only if the statement involving the 

matching concepts in the fourth column is true.� 
 

The corresponding principle in three dimensions is similar but involves more data. 
 

Metatheorem 6.  (Duality principle for projective 3 – space)   Every theorem about 

lines and planes in   PPPP(RRRR
3)  remains true if one interchanges the words “point” and 

“plane” as well as the following phrase pairs: 
 

(1)  “point lies on a plane”  and “line contains a point,” 
 

(2)  “point lies on a line”  and “plane contains a line.” 
 

Explanation.    We shall use the same general pattern of argument as before.  In this 

case many of the results of this section on  PPPP(RRRR
3)  can be summarized in the table on 

the next page: 
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Geometric 
Concept 

 

Algebraic 

Counterpart 

Transposed Version Dual Geometric 

Interpretation 

 
Plane 

1 – dimensional 

subspace of row vectors 

1 – dimensional 

subspace of column 
vectors 

 
Point 

 
Point 

1 – dimensional 

subspace of column 
vectors 

1 – dimensional 

subspace of row 
vectors 

 
Plane 

 
A point lies on a 
plane 

The product of a column 
vector left multiplied by 
a row vector is zero 

The product of a row 
vector left multiplied 
by a column vector is 
zero 

 
A plane contains a 
point 

 
A plane 
contains a point 

The product of a row 
vector left multiplied by 
a column vector is zero 

The product of a 
column vector left 
multiplied by a row 
vector is zero 

 
A point lies on a 
plane 

Line (given by 
the set of points 
lying on it) 

2 – dimensional 

subspace of column 
vectors 

2 – dimensional 

subspace of row 
vectors 

Line (given by the 
bundle of planes 
containing it) 

 
A point lies on a 
line 

A given column vector 

lies in a 2 – dimensional 

subspace of column 
vectors 

A given row vector lies 

in a 2 – dimensional 

subspace of row 
vectors 

 
A plane contains a 
line 

A line contains 
a point 

A 2 – dimensional 

subspace of column 
vectors contains a given 
column vector 

A 2 – dimensional 

subspace of row 
vectors contains a 
given row vector 

 
A line lies on a 
plane 

 
 
A line lies on a 
plane 

The right side product of 
a given row vector with 

every member of 2 – 
dimensional subspace 
of column vectors is 
zero 

The left side product 
of a given column 
vector with every 

member of 2 – 
dimensional subspace 
of row vectors is zero 

 
 
A line contains a 
point 

 
A plane 
contains a line 

A given row vector lies 

in a 2 – dimensional 

subspace of row vectors 

A given column vector 

lies in a 2 – 
dimensional subspace 
of column vectors 

 
A point lies on a 
line 

 

The same reasoning as in the previous metatheorem shows that a statement involving 
the geometric concepts in the first column will be true if and only if the statement 

involving the matching concepts in the fourth column is true.� 

 
Examples of dualization 

 
Here is a simple but basic example in which geometrical data are dualized.  Consider 

the statement tnat  A,  B,  C  are noncollinear points.  In  PPPP(RRRR
2)  the dual configuration 
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is given by three lines  L,  M,  N  that do not pass through a common point; in the other 

words, the lines  L,  M,  N  are not concurrent.  Similarly, in  PPPP(RRRR
3)   the dual 

configuration is given by three planes  P,  Q,  S  that do not contain a common line.  The 
drawing below depicts a triple of planes with this property. 
 

 
 

(Modified from http://home.flash.net/~fmco/images/image82.gif) 
 

Similarly, the dual to a configuration of four noncoplanar points  A,  B,  C,  D  in  PPPP(RRRR
3)  

will be four planes  P,  Q,  S,  T  whose intersection is empty.  The simplest model for 
this is given by the planes containing the four faces of a triangular pyramid (or 
tetrahedron). 
 

 
 

We shall conclude this section with illustrations of how the duality principles are used.  
The first examples only involve homogeneous coordinates, but they are extremely useful 

for computational purposes (even in ordinary coordinate geometry!). 
 

Proposition 7.    (1)   Suppose that  L,  M  and  N  are distinct lines in  PPPP(RRRR
2)   with 

homogeneous coordinates given by  a,  b  and  c  respectively, and let  [a, b, c]  denote 

the determinant of the  3 × 3  matrix whose rows are given by  a,  b  and  c.  Then the 

lines  L,  M  and  N  are concurrent if and only if  [a, b, c]  =  0. 
 

(2)   Suppose that  S,  T,  U  and   V  are distinct planes in  PPPP(RRRR
3)  with homogeneous 

coordinates given by  a,  b,  c  and  d  respectively, and let  [a, b, c, d]  denote the 

determinant of the  4 × 4   matrix whose rows are given by  a,  b,  c  and  d.  Then the 

planes  S,  T,  U  and  V  contain a common point if and only if  [a, b, c, d]   =  0. 
 

Clearly this result is analogous to a proposition in the preceding section, and in fact it 

gives the dual statements to the earlier results.   As in the preceding section, there are 

immediate applications to ordinary lines in  RRRR
2
  and planes in  RRRR

3
, for if the lines or 

planes are all described in terms of nontrivial linear equations, then homogeneous 
coordinates for the line or plane are given directly by the constant term together with the 

coefficients of the   x – ,  y – ,   and (if applicable)  z – coordinates. 
 

Proof.   In the first case, if there is a point  Y  which lies on all three lines and it has 

homogeneous coordinates given by  z,  then we know that  a,  b  and  c  all satisfy the 
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matrix equation  x z   =  0.   Since the subspace of all solutions to this equation is  2 – 

dimensional, it follows that the three vectors must be linearly dependent and hence we 

have  [a, b, c]  =  0.  Conversely, if this equation holds then the three vectors span a   

2 – dimensional subspace and hence there is a nonzero column vector  z  such that  
 

a z    =   b z    =   c z    =   0. 
 

If  Y  is a point whose homogeneous coordinates are given by  z, then it follows that  Y  

lies on each of the lines  a,  b  and  c.   
 

The proof in the  3 – dimensional case is similar, the main differences being that one 

must make the following subsitutions: 
 

xxxplanes   in place of    lines 
 

iiiiiiiiiiifour    in place of    three 
 

cii[a, b, c, d]   =  0   in place of     [a, b, c]  =  0 
 

a,  b,  c  and  d     in place of    a,  b  and  c 
 

 v v3 – dimensional   in place of   2 – dimensional 
 

The details of carrying this out are left to the reader.� 
 

Finally, here is an example involving the proof of a theorem in projective geometry and 
the formulation of its dual statements.  The result itself is fairly simple, but the point is to 
show how dualization works in practice with a minimum of other complications. 
 

We are interested in the following property of planes in projective geometry. 
 

Proposition 8.    Let   n  =  2  or  3,  and let  P  be a plane in  PPPP(RRRR
n).   Then there 

exist four points in  P  such that no three are collinear. 
 

One particularly simple example of such a set of four points is depicted below: 
 

 
 

Proof.    Suppose that the plane  P  corresponds to the  3 – dimensional subspace  S  

of  RRRR
n

 

+
 

1
,  let  { u, v, w }  be a basis for  S,  and suppose that these basis vectors 

represent the noncollinear points  A,  B  and  C  respectively.  Take  D  to be the point 

with homogeneous coordinates given by  u + v + w.   We claim that no three of the 

points   A,  B,  C,  D  are collinear; this is true because simple linear algebra calculations 

show that each of the sets of vectors  { u + v + w, v, w },  { u, u + v + w, w },  and   

{ u, v, u + v + w }  is linearly independent.� 
 

Here is what happens when we dualize the preceding result in the projective plane and 

in projective  3 – space. 
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Plane Dual Proposition 9.    There exist four lines in  PPPP(RRRR
2)  such that no three pass 

through a single point.� 
 

Space Dual Proposition 10.   Given an arbitrary point  X  in  PPPP(RRRR
3),  there exist four 

planes containing  X  such that no three have a line in common.� 
 

The configurations in the dual propositions are illustrated below. 
 

 
 

Note in particular that the  3 – dimensional dual configuration corresponds to the lateral 

sides of a pyramid with a rectangular base. 

 


