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V .7 : Non – Euclidean geometry in modern mathematics 
 

 
Hyperbolic geometry, which was considered a 
dormant subject ... [in the middle of the 20

th
 

century], has turned out to have extraordinary 
applications to other branches of mathematics. 
 

Greenberg, p. 382 
 

It seems appropriate to conclude this unit on non – Euclidean geometry with a brief 
discussion of the role it plays in present day mathematics.  Questions of this sort arise 
naturally, and In particular one might ask whether objects like the hyperbolic plane 
are basically formal curiosities or if they are important for reasons beyond just 
showing the logical independence of the Fifth Postulate.  In fact,  hyperbolic 
geometry turns out to play significant roles in several contexts of independent 
interest.  Some of these date back to the 19th century, but others were only 
discovered during the last few decades of the 20th century. 
 
 

Additional models for hyperbolic geometry 
 
 

Most of the ties between hyperbolic geometry and other topics in mathematics involve 
mathematical models for the hyperbolic plane (and spaces of higher dimensions) which 

are different from the Beltrami – Klein models described in the preceding section.  There 
are three particularly important examples.  One model (the Lorentzian model) is 

discussed at length in Chapter 7 of Ryan, and two other basic models are named after 

H. Poincaré  (pronounced pwan – ca – RAY).   We shall only consider a few of 

properties of the Poincaré models in these notes.  Further information can be found at 
the following online sites: 
 

http://www.geom.uiuc.edu/docs/forum/hype/model.html 
 

http://www.mi.sanu.ac.yu/vismath/sazdanovic/hyperbolicgeometry/hypge.htm 
 

http://math.fullerton.edu/mathews/c2003/poincaredisk/PoincareDiskBib/Links/PoincareDiskBib_lnk_1.html 
 

http://mathworld.wolfram.com/PoincareHyperbolicDisk.html 
 

http://www.geom.uiuc.edu/~crobles/hyperbolic/hypr/modl/ 
 

Probably the most important and widely used model for hyperbolic geometry is the 

Poincaré disk model.  In the 2 – dimensional case, one starts with the points which lie 

in the interior of a circle (i.e., in an open disk) as in the Beltrami – Klein model, but the 
definitions of lines, distances and angle measures are different.  The lines in this model 
are given by two types of subsets. 
 

1. Open “diameter” segments with endpoints on the boundary circle. 
 

2. Open circular arcs whose endpoints lie on the boundary circle and meet the 

boundary circle orthogonally (i.e., at each endpoint, the tangent to the boundary 
circle is perpendicular to the tangent for the circle containing the arc). 

 

An illustration of the second type of “line” is given below.   
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The drawing below illustrates several lines in the Poincaré disk model. 
 

 
 

 (Source:  http://www.geom.uiuc.edu/~crobles/hyperbolic/hypr/modl/pncr/ ) 
 

The Poincaré disk model distance between two points is given by a formula which 

resembles the comparable identity for the Beltrami – Klein model, and it is given in the 
first online reference in the list of online sites at the beginning of this section.  On the 
other hand, one fundamentally important feature of the Poincaré disk model is that   
its angle measurement is exactly the same as the Euclidean angle between the 

two intersecting curves  (i. e., given by the usual angle between their tangents);  such 

angle measure preserving models are said to be  conformal.   In contrast, both the 

distance and the angle measurement in the Beltrami – Klein model are different from 

their Euclidean counterparts. 
 

The second Poincaré model in two dimensions is the Poincaré half – plane model, 

and its points are given by the points in the upper half plane of  RRRR
2
; in other words, the 

points are all ordered pairs  (x, y)  such that   y  >  0.   The lines in this model are once 
again given by two types of subsets. 
 

(1)  Vertical open rays whose endpoints lie on the   x – axis. 

(2)  Open semicircular arcs whose endpoints lie on the   x – axis.  
 

The drawing below illustrates several lines in the Poincaré half – plane model.  
 

 
(Source: http://www.geom.uiuc.edu/~crobles/hyperbolic/hypr/modl/uhp/ ) 
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The Poincaré half – plane model distance between two points is given by a formula in 
the first reference in the list of online sites at the beginning of this section.  As in the 

preceding case, one fundamentally important feature of the Poincaré half – plane model 
is that its angle measurement is exactly the same as the Euclidean angle between two 

intersecting curves (i.e., given by the usual angle between their tangents).   
 

Euclidean models of the hyperbolic plane.  In all the preceding models, it was 
necessary to introduce a special definition of distance in order to make everything work 
right.   It would be very satisfying if we could give a nice model for the hyperbolic plane 

in Euclidean 3 – space for which the distance is something more familiar (i.e., the 

hyperbolic distance between two points is the length of the shortest curve in the model 
joining these points), but unfortunately this is not possible.  The first result to show that 

no reasonably nice and simple model can exist was obtained by D. Hilbert (1862 – 1943) 

in 1901, and it was sharpened by N. V. Efimov (1910 – 1982) in the 1950s.   One 

reference for Hilbert’s Theorem is Section 5 – 11 in the following book: 
  

M. Do Carmo, Differential Geometry of Curves and Surfaces,  Prentice – Hall, 

Upper Saddle River, NJ, 1976. ISBN: 0–132–12589–7. 
  

In contrast, during 1950s N. H. Kuiper (1920 – 1994) proved a general result which 

shows that the hyperbolic plane can be realized in Euclidean  3 – space with the “right” 

distance, but the proof is more of a pure existence result than a method for finding an 
explicit example, and in any case the results of Hilbert and Efimov show that any such 
example could not be described very simply.   Kuiper’s result elaborates upon some 

fundamental results of J. F. Nash (1928 – ); another an extremely important general 

result of Nash implies that the hyperbolic plane can be realized nicely in Euclidean n – 

space if  n  is sufficiently large; it is known that one can take  n  =  6, but apparently 

there are open questions about the existence of such realizations if  n  =  5   or  4.   

Here are references for the realizability of the hyperbolic plane in Euclidean  6 – space; 
the first is the original paper on the subject, and the second contains a fairly explicit 
construction of a nice model near the end of the file. 
 

 D. Blanuša, Über die Einbettung hyperbolischer Räume in euklidische 
Räume. Monatshefte für Mathematik  59 (1955), 217 – 229. 
 

http://www.math.niu.edu/~rusin/known-math/99/embed_hyper  
 

In yet another — and more elementary — direction,  it is not particularly difficult to 

represent SMALL PIECES of the hyperbolic plane nicely in Euclidean 3 – space.  

In particular, this can be done using a special surface of revolution known as a  
pseudosphere.  Further information on this surface can be found in many differential 

geometry books and notes, including pages 96 – 97 of the following online reference: 
 

http://math.ucr.edu/~res/math138A/dgnotes2006.pdf 
 

Footnote.   (This is basically nonmathematical information.)   The extraordinary life of 
John Nash received widespread public attention in the biography, A Beautiful Mind, by 
S. Nasar, and the semifictional interpretation of her book in an Academy Award winning 
film of the same name.  During the 1950s Nash proved several monumental results in 
geometry, but in nonmathematical circles he is better known for his earlier work on game 

theory, for which he shared the 1994 Nobel Prize in Economics with J. Harsányi  (1920 – 
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2000)  and R. Selten  (1930 – );  an ironic apsect of this is noted in the footnote at the 
bottom of page 565 in Greenberg. 

 
 

Hyperbolic geometry models and differential geometry 
 
 

We have already mentioned Riemann’s approach to the classical non – Euclidean 
geometries, which views the latter as special types of objects now called Riemannian 

geometry.   Numerous properties of hyperbolic  n – spaces play fundamental roles in 

many aspects of that subject, including some that have seen a great deal of progress 
over the past three decades.   Three books covering many of these advances are 
discussed in a relatively recent book review by B. Kleiner [ Bull. Amer. Math. Soc. (2)  39 

(2002), 273 – 279. ] 

 
 

The Poincaré disk model and functions of one complex variable 
 
 

The investigation of the symmetries of a given 
mathematical structure has always yielded the 
most powerful results. 
 

E. Artin (1898 – 1962) 
 

There also is an important connection between the models described above and the 
subject of complex variables.  In the latter subject, one considers complex valued 
functions that are defined in a region of the complex plane and defines the concept of 
differentiability in complete analogy with the real case; specifically, given a complex 
valued function  ffff      defined in such a region, the complex derivative of  ffff      at a point   

c  in this region is the limit of  
 

cz

cfzf

−−−−

−−−− )()(  

 

as  z  approaches  c,  provided that the limit exists.  Functions which have complex 
derivatives at all points are said to be complex analytic.  Many results and examples 
involving differentiable functions from ordinary calculus have analogs for complex 
analytic functions; eventually two subjects become quite distinct, but a discussion of 
such matters is beyond the scope of these notes.   Our objective here is to state the 
following important relationship between the Poincaré disk model and analytic function 
theory. 
 

Theorem 1.  Given the Poincaré disk model of the hyperbolic plane, let W be the 
underlying set of points viewed as a region in the plane.  Then a  1 – 1  correspondence 

ϕϕϕϕ     from  W  to itself is a hyperbolic isometry if and only if either (1)  ϕϕϕϕ  and its inverse 

are complex analytic or else  (2)  the complex conjugates  of ϕϕϕϕ and its inverse are 
complex analytic.  
 

The proof of this result involves methods and results from the theory of complex 

variables.  A detailed treatment appears in Section VII.2 of the following textbook: 
 

S. Lang, Complex Analysis (4
th

 Ed., corrected 3
rd

 printing).  Springer – 

Verlag, New York, 2003.  ISBN: 0–387–98592–1. 
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Theorem 1 reflects the importance of hyperbolic geometry in a branch of complex 
analysis called the theory of Riemann surfaces.   The latter play important roles in 
many mathematical subjects.  For example, the proof of Fermat’s Last Theorem, mainly 

by A. Wiles (1953 – ), uses the hyperbolic geometrical structures that exist on most 
Riemann surfaces  (Note: This fact led to some misunderstanding of Wiles’ work in 
some nontechnical books on the subject; these are summarized and accurately 
analyzed in the online article  http://en.wikipedia.org/wiki/Marilyn_vos_Savant. ). 
 

There are also important connections between the theory of hyperbolic symmetries and 
a subject called inverse geometry; the latter studies a class of transformations called 
inversions, and some of these inversions correspond to reflections in the hyperbolic 

plane or hyperbolic 3 – space.  Further information on this subject can be found in the 

previously cited book by Wallace and West (mainly Section 5.5), Chapters 24 and 25 of 
the previously cited book by Moïse, and also in the following online references:  

 

http://en.wikipedia.org/wiki/Inversive_geometry 
 

http://www.maths.gla.ac.uk/~wws/cabripages/inversive/inversive0.html   
 

http://www.maths.gla.ac.uk/~wws/cabripages/klein/models.html 
 

Some basic facts about inverse geometry are also included in the exercises for this unit. 
 
 

Regular tessellations 
 
 

For some minutes Alice stood without speaking, 
looking out in all directions over the country  ...  “I 
declare it’s marked out just like a large chessboard  

...  all over the world — if this is the world at all.” 
 

Lewis Carroll (C. L. Dodgson, 1832 – 1898), 
Through the Looking Glass 

 

Although a precise and comprehensive description of hyperbolic geometry’s place in 
modern mathematics is beyond the scope of these notes, we shall describe one 
geometric manifestation of its role.  However, before doing so we shall summarize the 
corresponding results for Euclidean and spherical geometry.    
 

The planar case.   A regular tessellation (or tiling) of the Euclidean plane is a 

decomposition of the plane into closed regions (see Section I I I.7) bounded by regular 
convex polygons such that the following hold: 
 

1. All the bounding polygons have the same number of sides. 
 

2. If the intersection of two distinct regions is nonempty, then it is a common 
side or vertex of the bounding polygons. 

 

There are three obvious ways to construct such regular tilings of the Euclidean plane.  If 
the regular polygons are squares, then one example corresponds to covering a flat 
surface by square tiles that do not overlap each other, and if the regular polygons are 
hexagons, then another example corresponds to the familiar honeycomb configuration of 
hexagons.   A third example this type is the covering of a flat surface by tiles that are 
equilateral triangles.  All of these are illustrated below.  
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Greek mathematicians (probably as early as the Pythagoreans) realized that the 
preceding examples were the only ones (up to similarity). 
 

The spherical case.    On the surface of the sphere, the regular tessellations 
correspond to  regular polyhedral  whose vertices lie on the sphere.    More precisely, 
the vertices of the regular tessellation for the sphere are just the vertices of the regular 
polyhedron, its edges are the great circles joining two vertices (one for each pair of 
vertices which lie on a common edge of the polyhedron), and its faces are the regions 
bounded by the spherical polygons bounded by appropriate edges.   
 

In view of the preceding discussion, the description of regular tessellations for the 
sphere reduces to the description of the possible types of regular polyhedra. The two 
simplest examples of regular polyhedra are a cube and a triangular pyramid such that 
each face is an equilateral triangle.  Each of these illustrates the fundamental properties 
that all regular solids should have. 
  

1. Every 2 – dimensional face should be a regular  n – gon for 

some fixed value of  n  ≥  3. 
 

2. Every 1 – dimensional edge should lie on exactly two faces. 
 

3. Every vertex should lie on  r  distinct faces for some fixed 

value of  r  ≥  3. 
 

4. No three vertices are collinear. 
 

5. Given a face  F,  all vertices that are not on  F  lie on the 
same side of the plane containing  F. 

 

Regular polygons beyond triangles and squares were known in prehistoric times, and in 
fact archaeologists have also discovered early examples of stones carved and marked 

to represent several (in fact, most and maybe all) 3 – dimensional regular polygons.  
One major achievement of Greek mathematics (which appears at the end of Euclid’s 
Elements) was the proof that there are exactly five distinct types of regular 
polyhedra, and they are listed and illustrated below: 
 

Type of 
polyhedron 

No. of 
vertices 

No. of 
edges 

No. of 
faces 

    

tetrahedron 4 6 2 
cube 8 12 6 

octahedron 6 12 8 
icosahedron 12 30 20 

dodecahedron 20 30 12 
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(Source: http://www.goldenmeangauge.co.uk/platonic.htm) 
 
 

Examples in the hyperbolic plane 
 
 

The situation in the hyperbolic plane is entirely different.  One important reason is given 

by the following result, which is also mentioned on page  176  of Ryan. 
 

Theorem 2.    Let  n  be an integer greater than  2,  and let  θθθθ     be a positive number less 
than  180(n – 2)/n.  Then there is a regular hyperbolic  n – gon such that all the sides 
have equal length and the measures of all the vertex angles are equal to  θθθθ. 
 

In particular, if  n  is  greater than  4  and  θθθθ  =  90,  then one might expect that we can 

form a regular tessellation of the hyperbolic plane with regular  n – gons such that four 
meet at each vertex.  In fact, this is possible.   This is a special case of the following 
general result: 
 

Theorem 3.    Suppose that m,  n   ≥   3 are integers such that 
  

.
2

111
<<<<++++

nm

 

 

Then there is a regular tessellation of the hyperbolic plane into solid regular  n – gons 

with  m  distinct polygons meeting at each vertex.  Conversely, if there is a regular 
tessellation of the hyperbolic plane into solid regular  n – gons with  m  distinct 
polygons meeting at each vertex, then the displayed inequality holds.   
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There are several ways to prove this theorem.  In particular, algebraic results of  W. F. 

von Dyck (1856 – 1934) give an approach which is related to the viewpoint of Ryan’s 
book. 
  

Since there are infinitely many pairs of positive integers  m  and  n  satisfying these 
conditions, it follows that  there are infinitely many distinct regular tessellations of 
the hyperbolic plane.   The type of such a tessellation is generally denoted by the 

ordered pair (n, m); note that  the first coordinate gives the number of sides.   We 
shall give a few illustrations below; they are taken from the following sources: 
 

http://aleph0.clarku.edu/~djoyce/poincare/poincare.html 
 

http://www.hadron.org/~hatch/HyperbolicTesselations/ 
 

http://www.google.com/search?hl=en&q=hyperbolic+tessellations&btnG=G
oogle+Search 

 

http://www.btinternet.com/~connectionsinspace/Patterns_and_Space_Fillin
g/Hyperbolic_Geometry/body_hyperbolic_geometry.html 

 

http://www.d.umn.edu/~ddunham/dunham04.pdf#search=%22hyperbolic%2
0tessellations%22 

 

http://en.wikipedia.org/wiki/Tilings_of_regular_polygons 
 

 
 

(5, 4) 
 

 
 

(3, 12) 
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(4, 8) 
 

 
 

(4, 6) 
 

Regular tessellations of the hyperbolic plane also appear in some of the artwork created 

by M. Escher (1898 – 1972).   For example, the angels and devils in the picture  Circle 

Limit  IV  fit together to form a tessellation by regular hexagons with right angles at 
every vertex (type (6, 4) in our notation).  This can be seen from the illustrations below: 
 

 
 

(Source:  http://www.d.umn.edu/~ddunham/mam/essay1.html ) 
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 (Source:  http://www.allposters.com/-sp/Circle-Limit-IV-Posters_i96944_.htm ) 

 

The following book contains further information on the interaction between art and 
progress in geometry during the past two centuries: 
 

L. D. Henderson,  The Fourth Dimension and Non – Euclidean Geometry in 
Modern Art.  Princeton Univ. Press, Princeton, 1983.  ISBN: 0–691–04008–7.  
 

A recent summary of this book (which is currently out of print) is available at the 
following online site: 
 

http://www.space.com/scienceastronomy/generalscience/astrobizarre_fourD_010619.html 
 
 

Final remarks 
 
 

There is an interesting relationship between Theorem  3  and the results for regular 
tessellations of the sphere and the Euclidean plane.  In the Euclidean plane, there is a 

regular tessellation into solid regular  n – gons with  m  distinct polygons meeting at 

each vertex if and only if  
 

.
2

111
====++++

nm

 

 

because this equation holds if and only if  (n, m)  is equal to one of the three ordered 

pairs  (3, 6),  (4, 4)  or  (6, 3).  Similarly, on the sphere there is a regular tessellation of 

the hyperbolic plane into solid regular spherical  n – gons with  m  distinct polygons 

meeting at each vertex if and only if  
 

2

111
>>>>++++

nm

 

 

because this equation holds if and only if  (n, m)  is equal to one of the five ordered 

pairs  (3, 3),  (3, 4),  (3, 3),  (3, 5)  or  (5, 3).  If we combine these observations with 

Theorem 3, we obtain the following unified conclusion: 
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For each ordered pair (n, m) such that m,  n   ≥   3,  there is a 

regular tessellation of either the Euclidean plane, the hyperbolic 

plane or the sphere into solid regular  n – gons with  m  distinct 

polygons meeting at each vertex, and the specific type of plane 
supporting such a configuration is given by comparing  ½  to the 
previously described sum of reciprocals: 

 

nm

11
++++  

 

In particular, the relevant geometry will be  spherical if this sum 
is greater than  ½, it will be  Euclidean if this sum is equal to  ½, 
and it will be  hyperbolic if this sum is less than  ½. 

  
Honeycomb patterns in higher dimensions.  Clearly one  can ask similar questions 

about regular decompositions of Euclidean  3 – space into nonoverlapping regular 

polyhedra which are congruent to each other, and the standard decomposition into 
cubes is a natural example which was probably known in prehistoric times (in the 
drawing  below, the vertices for a portion of this decomposition are shown in red). 
 

 
 

(Source:  http://www.metafysica.nl/turing/preparation_3dim_2.html) 
 

Tessellation – like decompositions of higher – dimensional spaces are often called 
honeycombs in the mathematical literature.  It turns out that the obvious examples with 
cubes  are the only types of regular honeycomb structures that can exist in Euclidean   

3 – space, and the file  
 

http://math.ucr.edu/~res/math153/history08b.pdf 
 

discusses the impossibility of  finding a decomposition into regular tetrahedra.  Further 

information on this topic appears in Section 4.6 of the following classic text: 
 

H. S. M. Coxeter,  Regular polytopes (3
rd

  Ed.).  Dover Publications, 
New York, 1973. 

 

Of course, one can also state similar questions for Euclidean spaces in dimensions 

greater than  3, and the following online references give the answers to such questions: 
 

http://en.wikipedia.org/wiki/List_of_regular_polytopes#Tessellations_of_Euclidean_3-space 
 

http://en.wikipedia.org/wiki/List_of_regular_polytopes#Tessellations_of_Euclidean_space 
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Likewise, one can consider questions about such decompositions for hyperbolic spaces 

in dimensions greater than  2.  The online references cited above contain further 

information on this topic, and another basic source is Chapter  10  in the following book 

(see also Summary Table  I V  on page 213):  
 

H. S. M. Coxeter,  The Beauty of Geometry: Twelve Essays.  Dover 
Publications, New York, 1999. 

 

 
 

V .8 : Summarizing the impact of non – Euclidean geometry 
 
 

The last few sections of Unit V discuss the impact of non – Euclidean geometry on 
mathematics and related subjects from several different viewpoints. The following list 
summarizes the discussion: 
 

1. In contrast to the laws of physics and chemistry, the laws for whole number 

arithmetic seem to be logically inevitable. However, the development of non – 
Euclidean geometry during the late 18th and most of the 19th centuries showed 
very conclusively that the classical setting for (Euclidean) geometry was not 
equally logically inevitable. 

 

2. In many respects, the classical non – Euclidean geometry  —  which is often 

called hyperbolic geometry — behaves like a spherical geometry in which the 
radius of the sphere is an imaginary number. 

 

3. Non – Euclidean was one of several important factors leading to the creation of a 
more rigorous logical foundation for mathematics during the late 19th and early 

20th centuries.  Mathematical models for both Euclidean and non – Euclidean 
geometry can be constructed within these frameworks for mathematics. 

 

4. The development of non – Euclidean geometry eventually led to many alternative 
mathematical theories for describing the physical universe, including the currently 
standard models of Relativity Theory.  There are some relationships between the 

latter and non – Euclidean geometry, but neither can really be described as part 
of the other. 

 

5. For many (maybe most) practical purposes, Euclidean geometry is an extremely 
good first order approximation for studying small regions in any reasonable 
theory of space. 

 

6. During the past half century, several mathematical advances have shown that 
hyperbolic geometry is fundamentally important.  The subject has turned out to 
be more than just a logical curiosity, and many of its basic features continue to 
play important roles in several branches of mathematics and its applications.  
Two simply stated examples involve the proof of Fermat’s Last Theorem and 
several of Maurits C. Escher’s artistic creations.  

 

In conclusion, it seems appropriate to end these notes with the following quotation from 

page 105 of Greenberg: 
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Let us not forget that no serious work toward constructing new axioms 

for Euclidean geometry had been done until the discovery of non – 
Euclidean geometry shocked mathematicians into reexamining the 
foundations of the former  [ Comment :  We have already noted  that  
other considerations also played important roles in forcing a review of the 

foundations for classical geometry ].  We have the paradox of non – 
Euclidean geometry helping us to better understand Euclidean geometry! 

 
 

 


