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MORE EXERCISES FOR SECTIONS II.1 AND II.2

There are drawings on the next two pages to accompany the starred (∗) exercises.

B1. Let L be a line in R
3, and let x be a point which does not lie on L. Using the Incidence

Axioms, prove that there is a unique plane P such that x ∈ P and L ⊂ P . [Hint: If A and B are
two points of L, why are A,B and X noncollinear?.]

B2. (∗) Suppose that we are given three distinct lines L,M,N in R
3 such that (i) the lines

all contain some point X, (ii) each of the lines has a point in common with a fourth line K which
does not contain X. Prove that there is a plane containing all four lines.

B3. Suppose that we are given points A,B,C and X,Y,Z such that A∗B ∗C and X ∗Y ∗Z

both hold, and in addition we have d(A,C) = d(X,Z) and d(B,C) = d(Y,Z). Prove that d(A,B) =
d(X,Y ). [If equals are subtracted from equals, the differences are equal.]

B4. (∗) Suppose that we are given points A,B,C such that A ∗ B ∗ C. Prove that (AB) is
a proper subset of (AC).

B5. (∗) Suppose that A 6= B; if AB is the line joining A to B, prove that AB = [AB ∪ [BA.

B6. (∗) Suppose that A ∗ B ∗ C; prove that [AB = [AB] ∪ [BC.

B7. Let L be a line in R
2, and let M be a second line in R

2 such that L and M meet at
the point A.

(a) (∗) If X and Y are points of M such that A ∗ X ∗ Y is true, prove that X and Y lie on
the same side of L.

(b) If X and Y are points of M such that X ∗A ∗Y , prove that X and Y lie on opposite sides
of L. [Hint: For both parts of this problem, show that the alternatives are impossible.]

B8. (∗) Suppose that we are given distinct points A,B in R
2, and suppose also that C and

D lie on opposite sides of the line AB. Prove that [AC and [BD have no points in common.

B9. (∗) (i) Suppose that we are given three noncollinear points A,B,C in R
2. Prove that

∆ABC ∩ AB = [AB]. [Hint: If X is a point on [BC] or [AC] other than A or B, explain why X

cannot lie on AB.]

B10. For each of the choices below, determine whether X and Y lie on the same side as
the line L defined by the corresponding equation.

(a) X = (3, 6), Y = (1, 7), and L is defined by the equation 9x − 4y = 7.

(b) X = (8, 5), Y = (−2, 4), and L is defined by the equation y = 3x − 7.

(c) X = (7,−6), Y = (4,−8), and L is defined by the equation 2x + 3y + 5 = 0.

(d) X = (0, 1), Y = (−2, 6), and L is defined by the equation 3y = 2 − 7x.
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DRAWINGS TO ACCOMPANY  
 

ADDITIONAL EXERCISES, SET B 
 
 

 

 

B2.  

 
 

The figure suggests that  L,  M,  and  N  are all contained in the plane containing the line  
K  and the point  X, which does not lie on K.   
 
 

B4.    

 
 

The goals is to show that  ( i )  if  X  is between  A  and  B,  then  X  is also between  A  

and  C,  ( i i )  there is some point  Y  such that  Y  is between  A  and  C  but  Y  is not 
between  A  and  B. 
 
 

B5.    

 
 

The goal is to show that the line  AB  is the union of the overlapping rays colored pink 
and light blue. 
 
 

B6.    

 
 

The goal is to show that the ray  [AB  is the union of the pink segment  [AB]  and the 
light blue ray  [BC.  
 
 



 

 

B7(a).    

 
 

The goal is to show that  X  and  Y  lie on the same side of  L, or equivalently that the 
other alternatives are impossible.  These alternatives are that one of  X, Y  lies on  L  or 
that  X  and  Y  lie on opposite sides of  L.  
 
 

B8.    

 
 

The points  B  and  D  are assumed to lie on opposite sides of the line  AB, and the 
objective is to prove that the rays  [AC  and  [BD  have no points in common.  
 
 

B9.    
 

 
 

To  show that the intersection of triangle  ABC  and line  AB  is the segment  [AB],  it will 
suffice to show that if  X  is a point of the triangle on either  (BC]  or  (AC]  then  X  does 
not lie on the line  AB.   
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EXERCISES INVOLVING CONVEX FUNCTIONS

Some of these exercises show that certain subsets of the coordinate plane which appear to be
convex actually satisfy the mathematical condition defining convexity. Others illustrate how some
arguments in convex-functions.pdf can be modified to yield further results on the topic.

K0. Show that if K is an open convex set and f is a convex function on K then the open

epigraph consisting of all (x, u) ∈ K × R such that u > f(x) (i.e., we have strict inequality) is
also a convex set. [Hint: Imitate the relevant portion of the proof for Theorem 1 in convex-

functions.pdf.]

K1. Using the Second Derivative Test, verify that the following functions are convex on the
indicated subsets of the real line:

(i) The hyperbolic cosine function f(x) = cosh(x) = 1

2
(ex + e−x), for all real numbers x.

(ii) The hyperbolic sine function f(x) = sinh(x) = 1

2
(ex − e−x), for all positive real numbers

x.

(iii) The function f(x) = tanx, for all x such that 0 ≤ x < 1

2
π.

(iv) The function f(x) = sinx, for all x such that π ≤ x ≤ 2π.

(v) The negative of the natural logarithm function f(x) = − log
e
x, for all positive real

numbers x.

K2. A real valued function f on a convex set is said to be concave (= concave downward

in calculus textbook terminology) if its negative −f is convex.

(i) Show that a function f is concave if and only if the set {(x, y) | y ≤ f(x)} is convex.
[Hint: Recall that −f is convex.]

(ii) Show that if f is defined on an interval in the real line and has a continuous second
derivative with f ′′ ≤ 0, then f is concave.

K3. Suppose that f and g are real valued functions defined on the same interval J in the real
line. If f is convex, g is concave, and f ≤ g on J , prove that the set {(x, y) | x ∈ J, f(x) ≤ y ≤ g(x)}
is convex. [Hint: The intersection of two convex sets is convex.]

K4. Let a be a positive real number. Using the preceding exercise, prove that the solid
elliptical region defined by

{

(x, y)

∣

∣

∣

∣

|x| ≤ a , |y| ≤

√

1 −
x2

a2

}

is convex. [Hint: If f(x) is the function at the end of the preceding display, explain why the solid
elliptical region is defined by the inequalities −a ≤ x ≤ a and −f(x) ≤ y ≤ f(x).]
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K5. A real valued function f on a convex set K is said to be strictly convex if for all
x,y ∈ K and t ∈ (0, 1) we have a strict inequality

f (tx + (1 − t)y ) < t f(x) + (1 − t) f(y) .

(i) Show that if f is defined on an interval in the real line and has a continuous second
derivative with f ′′ > 0, then f is strictly convex. [Hint: As in the proof of Theorem 2
in convex-functions.pdf, assume first that f is defined on a closed interval [a, b] let g

be the linear function such that f(a) = g(a) and f(b) = g(b). Using the methods in the
arguments for Theorem 2 and Lemma 3, prove that the stronger condition f ′′ > 0 implies
that g(x) − f(x) is strictly positive for all x satisfying a < x < b. Conclude by showing
this yields strict convexity.]

(ii) Use the preceding to show that a function satisfying the hypotheses in Theorem 5 of
convex-functions.pdf is strictly convex.
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MORE EXERCISES FOR SECTIONS II.3 AND II.4

All of the supplementary exercises for Section I.4 and many of those for Sections II.1–II.2 were
fairly elementary and intended to help reinforce basic concepts. In contrast, the exercises below
are more challenging and included to cover some additional material.

C1. Suppose that A,B,C are noncollinear points in a plane P , and let X ∈ ∆ABC. Prove
that if X is a vertex of ∆ABC then there are (at least) two lines L and M such that X lies on
both and each contains at least three distinct points of ∆ABC, but if X is not a vertex then there
is only one line L in P such that X ∈ L and L contains at least three points of ∆ABC. [Hint:

The conclusion in Exercise II.2.8 is useful for establishing part of this result.]

C2. Suppose that we are given ∆ABC and ∆DEF in a plane P such that ∆ABC = ∆DEF.

Prove that {A,B,C} = {D,E, F}. [Hint: Use the preceding exercise.]

C3. Suppose that we are given a triangle ∆ABC in a plane P , and suppose that L is a line
in P such that L contains a point X in the interior of ∆ABC. Prove that L and ∆ABC have (at
least) two points in common.

C4. [In this exercise we shall view points of R
n as n× 1 column vectors and identify scalars

with 1 × 1 matrices in the obvious fashion.] Let T be an affine transformation of R
3 and write

it as T (x) = Ax + b, where A is an invertible 3 × 3 matrix and b is some vector in R
3. Let P be

the plane defined by the equation Cx = d, where C is a 3 × 1 matrix and d ∈ R, and let Q be the
image of P ; in other words, Q is the set of all vectors y such that y = T (x) for some x ∈ P . Prove
that Q is also a plane, and give an explicit equation of the form Uy = v (where U is 1× 3 and v is
a scalar) which defines Q. [Hint: Solve T (x) = y for x in terms of y, A and b.]

NOTE. One specific consequence of the preceding result is that planar figures (which are
contained in some plane) and nonplanar figures (which are not contained in any plane) cannot be
congruent to each other.

C5. Suppose that we are given coplanar points A,B,C,D such that no three are collinear,
and suppose further that the following conditions hold:

(1) B does not lie in the interior of 6 CAD.

(2) C does not lie in the interior of 6 BAD.

(3) D does not lie in the interior of 6 CAB.

Prove that | 6 BAC|+ | 6 CAD|+ | 6 DAB| = 360◦. [Hint: Show that (CD) meets AB in a point E

such that E ∗ A ∗ B holds.]
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