SUPPLEMENTARY EXERCISES ON AFFINE EQUIVALENCE

- **T1.** Let K be a nonempty convex subset of \mathbb{R}^2 , and let L be a line in \mathbb{R}^2 such that $K \cap L$ is empty. Prove that all the points of K lie on the same side of L. [Hint: Assume that K contains points on both sides of L and derive a contradiction.]
- **T2.** Let **a**, **b**, **c** be noncollinear points in \mathbb{R}^2 , and let F be an affine transformation of \mathbb{R}^2 . Prove that F sends $\angle \mathbf{abc}$ to $\angle F(\mathbf{a})F(\mathbf{b})F(\mathbf{c})$. [Hint: By Corollary II.4.8 F maps rays to rays, and we also know that if X and Y are subsets of \mathbb{R}^2 then F maps the union $X \cup Y$ to $F[X] \cup F[Y]$.]
- **T3.** Assume the setting of the preceding exercise, and prove that F maps the exterior of $\angle abc$ to the exterior of $\angle F(a)F(b)F(c)$. [Hint: By Theorem 12 in affine-convex.pdf and a previous exercise we know that F maps the angle and its interior to themselves.]
- **T4.** If L and M are parallel lines in \mathbb{R}^2 , then by Exercise **T1** we know that all points of L lie on the same side of M and all points of M lie on the same side of L. Define the *strip between* L and M to be the set of points \mathbf{x} such that \mathbf{x} and L are the same side of M and \mathbf{x} and M are the same side of L.
- (i) Prove that the strip between L and M is convex and nonempty. Specifically, prove that if $A \in L$ and $B \in M$, then the midpoint C of (AB) lies in this set.
- (ii) Prove that if F is an affine transformation of \mathbb{R}^2 and L and M are parallel lines in \mathbb{R}^2 , then F maps the strip between L and M to the strip between F[L] and F[M]. [Hint: Apply Theorem 11 in affine-convex.pdf.]