SUPPLEMENTARY EXERCISES ON AFFINE EQUIVALENCE

T1. Let K be a nonempty convex subset of \mathbb{R}^{2}, and let L be a line in \mathbb{R}^{2} such that $K \cap L$ is empty. Prove that all the points of K lie on the same side of L. [Hint: Assume that K contains points on both sides of L and derive a contradiction.]

T2. Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be noncollinear points in \mathbb{R}^{2}, and let F be an affine transformaton of \mathbb{R}^{2}. Prove that F sends $\angle \mathbf{a b c}$ to $\angle F(\mathbf{a}) F(\mathbf{b}) F(\mathbf{c})$. [Hint: By Corollary II.4.8 F maps rays to rays, and we also know that if X and Y are subsets of \mathbb{R}^{2} then F maps the union $X \cup Y$ to $F[X] \cup F[Y]$.]

T3. Assume the setting of the preceding exercise, and prove that F maps the exterior of $\angle \mathbf{a b c}$ to the exterior of $\angle F(\mathbf{a}) F(\mathbf{b}) F(\mathbf{c})$. [Hint: By Theorem 12 in affine-convex.pdf and a previous exercise we know that F maps the angle and its interior to themselves.]

T4. If L and M are parallel lines in \mathbb{R}^{2}, then by Exercise $\mathbf{T} \mathbf{1}$ we know that all points of L lie on the same side of M and all points of M lie on the same side of L. Define the strip between L and M to be the set of points \mathbf{x} such that \mathbf{x} and L are the same side of M and \mathbf{x} and M are the same side of L.
(i) Prove that the strip between L and M is convex and nonempty. Specifically, prove that if $A \in L$ and $B \in M$, then the midpoint C of $(A B)$ lies in this set.
(ii) Prove that if F is an affine transformation of \mathbb{R}^{2} and L and M are parallel lines in \mathbb{R}^{2}, then F maps the strip between L and M to the strip between $F[L]$ and $F[M]$. [Hint: Apply Theorem 11 in affine-convex.pdf.]

