
Exercises for Unit V   

(Introduction to non – Euclidean geometry) 
 

 

 V.1 : Facts from spherical geometry 
 
 

1.  Two points on a circle ΓΓΓΓ are said to be diametrically opposite if the center of 

the circle lies between them.  Suppose that  A  and  B  are points on ΓΓΓΓ that are not 

diametrically opposite, and let  M  and  m  be the major and minor arcs of  ΓΓΓΓ     determined 
by  A  and  B.   Prove that  M  contains pairs of diametrically opposite points, but  m  

does not contain any pairs of diametrically opposite points.   [ Hint :   If the circle  ΓΓΓΓ  has 
center  Q  and contains the points  A  and  B  such that  A  and  B  are not diametrically 
opposite each other, then the minor arc of the circle determined by  A  and  B  is the 

union of  {  A, B  }  and the intersection of  ΓΓΓΓ  with the interior of  ∠∠∠∠ AQB, and the 

corresponding major arc is the union of  {  A, B  }  and the set of all points in  ΓΓΓΓ  that do 

not lie on the minor arc. ] 
 

2.  A basic theorem of solid geometry states that  the intersection of a sphere and 
a plane is either empty, a single point or a circle.  Find the radius of the circle of 

intersection for the sphere with equation x
2  +  y

2  +  z
2
  =  1 and the plane with 

equation x  +  y  +  z  =  1.   [ Hint :   If the sphere  ΣΣΣΣ  and plane  P  have an 
intersection which consists of more than one point, then the center  z  of the circle where 

they intersect is the foot of the perpendicular from  z  to  P.  In particular, if  ΣΣΣΣ  is given 

by the equation  | x |
2
 = 1  and  P  is given by an equation of the form  a · x =  b  

where  a  is nonzero, then the perpendicular line is the subspace spanned by  a.] 
 

3.  Suppose that we are given two spheres  ΣΣΣΣ1  and  ΣΣΣΣ2  which have different 
centers and at least one point in common.   Prove that their intersection is contained in a 

plane  ΠΠΠΠ  which is perpendicular to the line joining their centers, and furthermore  

ΣΣΣΣ1 ∩∩∩∩ ΣΣΣΣ2  =  ΣΣΣΣ1 ∩∩∩∩ Π Π Π Π   =  ΣΣΣΣ2 ∩∩∩∩ ΠΠΠΠ.  [ Hint :  Use vectors. ] 

 

4.  Suppose that the sphere  ΣΣΣΣ     and the plane  P  intersect in exactly one point  X, 

and suppose that  Q  is the center of  ΣΣΣΣ.  Prove that  QX  is perpendicular to  P.  

Conversely, show that if the sphere  ΣΣΣΣ     and the plane  P  intersect at  X such that  QX  is 

perpendicular to  P, then  ΣΣΣΣ     and  P  have exactly one point in common.  [ Hint :  These 
are analogs of the results for tangent lines to circles in plane geometry. ] 
 

 

V.2 : Attempts to prove Euclid’s Fifth Postulate 
 

 
1.  For each of the following theorems in plane geometry, give a proof which is valid 

in a neutral plane P.  In other words, such a proof  must not  use Playfair’s Postulate, 



the proof  must be  synthetic, and  it must not be analytic or based upon linear 
algebra.  
 

(a) Let  A  and  B  be distinct points, and let  x  be a positive real number.  Then 

there is a unique point  Y  on the open ray  (AB  such that  d(A, Y)  =  x.  

Furthermore, we have  A∗Y∗B  if and only if  x <    d(A, B),  and likewise we 

have  A∗B∗Y  if and only if  x  >  d(A, B).  [ Hint :  Use the Ruler Postulate. ] 
  

(b) If  L  is a line and  X  is a point not on  L, then there is a unique line through   
X  which is perpendicular to  L.   [ Hint :  Let  A  and  B  be points on  L,  and 

find a point  Y  on the side of  L  opposite  X  such that   ����XAB  ≅≅≅≅  ����YAB .  

Show that  L  is the perpendicular bisector of  [XY].   Use the Exterior Angle 
Theorem to show there cannot be two perpendiculars from  X  with feet  C  
and  D.  ]  
 

(c) The Classical Triangle Inequality.   [ Hint :  Given ����ABC,  let  D  be such that  

A∗B∗D  and  d(B, D)  =  d(B, C).   Show that  |∠∠∠∠ADC| < |∠∠∠∠ACD|,  and 

explain why the conclusion follows from this. ]  
 

(d) The  AAS  Triangle Congruence Theorem.   [ Hint :   Given  ����ABC  and  

����DEF  with  d(A, B)  =  d(D, E) ,  |∠∠∠∠ABC|   =  |∠∠∠∠DEF|    and |∠∠∠∠ACB|  =  

|∠∠∠∠DFE|  ,    we know that  ����ABC  ≅≅≅≅  ����DEF  if d(A, C)  =  d(D, F) ,     so 

assume this is false.   Explain why, without loss of generality, we may 

assume d(A, C)   >   d(D, F) .      Let  G  be a point of  (AC)  such that that  

d(A, G)  =  d(D, F) ,     so that   ����ABG  ≅≅≅≅  ����DEF.   Why does this imply that  x 

|∠∠∠∠AGB|   = |∠∠∠∠ACB|, and why does this contradict the Exterior Angle 
Theorem? ]  

 

 

V.3 : Neutral geometry 
 

 

1.  Suppose that  p  and  q  are arbitrary positive real numbers.  Prove that there is a 

Saccheri quadrilateral  �ABCD  with base  AB  such that  d(A, D)  =  d(B, C)  =  p  

and  d(A, B)  =  q . 
 

2.  Prove the following consequence of the Archimedean Law that was stated in the 

notes:  If  h  and  k  are positive real numbers, then there is a positive integer  n  such 

that   h/2n
 <  k.  [ Hint :  Why is there a positive integer  n  such that  1/n   <   k/h ?  

Use this and the inequality n < 2
n
. ]  

 

Standing hypotheses:  In Exercises 2 – 5 below, points  A,  B,  C,  D  in a 
neutral plane form the vertices of a Saccheri quadrilateral such that  AB  is 

perpendicular to  AD  and  BC, and  d(A, D)  =  d(B, C).  The segment  [AB]  is 

called the  base, the segment  [CD]  is called the  summit, and  [AD]  and  [BC]  
are called the  lateral sides.  The vertex angles at  C  and  D  are called the  

summit angles.   



 

 
 

3.  Prove that the summit angles at  C  and  D  have equal measures.  [ Hint :  Why 

do the diagonals have equal length?  Use this fact to show that  ����BDC  ≅≅≅≅  ����ACD. ]   

 

4.  Prove that the line joining the midpoints of  [AB]  and  [CD]  is perpendicular to 
both  [AB]  and  [CD].  [ Hint :  Imitate a similar argument from an earlier set of 
exercises for isosceles trapezoids in Euclidean geometry. ]   
 

5.  Prove that  d(A, B)  ≤  d(C, D).  [ Hint :   First show by induction that if  G1, … , 

Gn  are arbitrary points, then  d(G1, Gn)   ≤   d(G1, G2)  + … +  d(Gn – 1, Gn).   Next, 
show that one can find Saccheri quadrilaterals as in the picture below such that Saccheri 

quadrilateral  ABCD  is identical to Saccheri quadrilateral   X0 X1 Y1 Y0   in the picture, 
with all summits and all bases having equal lengths.  The idea of the construction should 

be clear from the picture, but some work is needed to show that each  d (Yj, Yj + 1)   is 

equal to   d (C, D); it is helpful to start by considering the diagonals  [Yj Xj + 1]  and the 

two triangles into which they split the Saccheri quadrilateral X j  X j + 1 Y j + 1 Y j .  
 

 
 

Using these observations, show that we have  
 

n d(A, B)    =    d(X0, Xn)     ≤ 
 

d(X0, Y0)  +  d(Y0, Y1)  + … +  d(Yn – 1, Yn)  +  d(Yn, Xn)  = 
 

n d(C, D)  +  2 d(A, D). 
 

This means that   d(A, B)   ≤   d(C, D)  +  2 d(A, D)/n  for every positive integer  n.  
Why can the second summand be made smaller than any positive real number, and why 

does this imply  d(A, B)   ≤   d(C, D)?  Alternatively, why does this imply that  d(A, B)   

>   d(C, D)  must be false?] 
 

6.  Suppose we are given Saccheri quadrilaterals � ABCD and � EFGH with right 
angles at  A,  B  and  E,  F  such that the lengths of the bases and lateral sides in   

� ABCD  and  � EFGH are equal.  Prove that the lengths of the summits and the 

measures of the summit angles in  � ABCD  and  � EFGH are equal. 
 



7.  Suppose are given Lambert quadrilaterals  � ABCD  and  � EFGH  with right 

angles at  A,  B,  C  and  E,  F,  G  such that  d(A, B)  =  d(E, F)  or  d(B, C)  =   

d(F, G).  Prove that  d(C, D)  = d(G, H) ,  d(A, D)  =  d(E, H),  and  |∠∠∠∠CDA|  =  

|∠∠∠∠GHE|.     
 

8.  In the setting of Exercise 5, prove that if we have  d(A, B)  =  d(C, D)  then the 

Saccheri quadrilateral  � ABCD  is a rectangle.   
 

9.  Suppose that the points  A, B, C, D  in a neutral plane form the vertices of a 

Lambert quadrilateral with right angles at  A, B, C.  Prove that  d(A, D)   ≤   d(B, C)  

and  d(A, B)   ≤   d(C, D).   [ Hint :  Start by explaining why it suffices to prove the first 

of these.  Show that there is a Saccheri quadrilateral  � AEFD  such that  B  and  C  are 

the midpoints of the base  [AE]  and the summit  [FD]  respectively.  Apply Exercise 4. ] 
 

10.  In the setting of the preceding exercise, prove that if we have either  d(A, B)  =  

d(C, D)  or  d(A, D)  =  d(B, C), then the Lambert quadrilateral  � ABCD  is a 
rectangle.   
 

11.  Suppose that  P  is a neutral plane, and let  p  and  q  be arbitrary positive real 

numbers.  Prove that there is a Lambert quadrilateral  �ABCD with right angles at  A, B,  

and  C  such that  d(A, D)  =  p  and  d(A, B)  =  q.   [ Hint :  One can view a Lambert 

quadrilateral as half of a Saccheri quadrilateral.] 
 

12.  Suppose that  P  is a neutral plane, and let   p  and  q  are arbitrary positive real 

numbers for which that there is a Lambert quadrilateral  �ABCD  with right angles at  A, 

B,  and  C  such that  d(A, B)  =  p  and  d(B, C)  =  q.   Let  s  be a positive real 

number such that  s  <  p.   Prove that there is a Lambert quadrilateral  �WXYZ  with 

right angles at  W, X,  and  Y  such that  d(W, X)  =  s  and  d(X, Y)  =  q.   [ Hint :  Let  

E  be a point on  (BA)  such that  d(B, E)  =  s.  Take the perpendicular line to  AB  in  

P  containing  E,  and explain why it must meet the diagonal segment  (BD)  and the 
opposite side  (CD)  using Pasch’s Theorem.] 
 

Note.   For arbitrary positive real numbers  p  and  q  it is not always possible to find 

a Lambert quadrilateral �ABCD with right angles at  A,  B,  and  C  such that    

d(A, B)  =  p  and  d(B, C)  =  q.   However, the proof involves a detailed analysis of 

the Poincaré model for hyperbolic geometry discussed in Sections V.5 – V.7 of the 

notes, and since our discussion of the model is only informal we cannot give a complete 
proof of this fact here.  However, a drawing which depicts one such example (where   

p = q  is sufficiently large) appears in the discussion of this exercise in the file 
 

http://math.ucr.edu/~res/math133/solutions07.figures.f13.pdf  
 

which can be found in the course directory. 
 

13.  Suppose that we are given  ����ABC  and  ����A′′′′B′′′′C′′′′  in a neutral plane  P  such 

that  ����ABC  ≅≅≅≅  ����A′′′′B′′′′C′′′′.  Let  D, E, F  be the respective midpoints of   [BC],   [AC]   

and  [AB],  and let  D′′′′,  E′′′′,  F′′′′  be the respective midpoints of  [B′′′′C′′′′],  [A′′′′C′′′′]   and   

[A′′′′B′′′′]. 



  

(a) Prove that ����AEF  ≅≅≅≅  ����A′′′′E′′′′F′′′′, and explain why we must also have 

����BDF   ≅≅≅≅  ����B′′′′D′′′′F′′′′  and  ����CDE  ≅≅≅≅  ����C′′′′D′′′′E′′′′. 

(b) Prove that ����DEF  ≅≅≅≅  ����D′′′′E′′′′F′′′′. 
 

14.  In Euclidean geometry one can improve the preceding result to say that all eight 
triangles in (a) and (b) are congruent to each other (with the vertices suitably ordered). 
Write out the conclusion explicitly, and explain why it is true.   
 

 

V.4 : Angle defects and related phenomena 
 

 

1.  Given a Saccheri quadrilateral in a hyperbolic plane  P, explain why the summit 

is always longer than the base.  If  �ABCD  is a Lambert quadrilateral in a hyperbolic 

plane  P  with right angles at  A, B, and C,  what can one say about the lengths of the 

pairs of opposite sides { [AB], [CD] } and { [BC], [AD] }?  Give reasons for your answer. 
 

2.  Given a Saccheri quadrilateral in a hyperbolic plane  P, show that the line 

segment joining the midpoints of the summit and base is shorter than the lengths of the 
lateral sides.   
 

3.  Suppose that  εεεε     is an arbitrary positive real number and  P  is a hyperbolic 

plane.  Prove that there is a triangle in  P  whose angle defect is less than  εεεε.      [ Hint :  

Let   ����ABC  have defect  δδδδ.         If one splits it into two triangles, why will  at least one  of 

them have defect at most  ½ δδδδ????  Show that if one iterates this enough times, one obtains 

the desired triangle. ]    
 

4.  Suppose we are given an isosceles triangle  ����ABC  in a hyperbolic plane  P   

with  d(A, B)  =  d(A, C),  and let  D  and  E  be points on  (AB)  and  (AC)  such that  

d(A, D)  =  d(A, E).   Prove that |∠∠∠∠ ABC|  <  |∠∠∠∠ ADE|.     [ Hint :  Compare the angle 
defects of the two isosceles triangles in the problem. ]    
 

5.  Suppose we are given an equilateral triangle ����ABC in a hyperbolic plane  P, 
and let  D,  E  and  F  be the midpoints of  [BC],   [AC]  and  [AB].   Prove that  

����DEF  is also an equilateral triangle and that |∠∠∠∠ ABC|  <   |∠∠∠∠ DEF|.  Using the 

conclusion of the preceding exercise, explain why ����AEF is not an equilateral triangle. 
 

6.  Prove the following result, which shows that Corollary III.2.15 (the “Third angles 

are equal” property) fails completely in hyperbolic geometry:  Given a triangle  ����ABC 

in a hyperbolic plane  P  and a point  D  on  (AB),  then there exists a point  E  on  

(AC)  such that        |∠∠∠∠ ABC|  =  |∠∠∠∠ ADE| but also |∠∠∠∠ ACB|   <   |∠∠∠∠ AED|. 
 

 



 

7.  Suppose we are given a Saccheri quadrilateral �ABCD in a hyperbolic plane  

P  with base  [AB],  and assume that the lengths of the base and lateral sides are equal.   

Does the ray  [AC  bisect ∠∠∠∠ DAB?  Give reasons for your answer. 
 

8.  Suppose we are given a hyperbolic plane  P.  Prove that there is a line  L  and an 

angle ∠∠∠∠ ABC in  P  such that  L  is contained in the interior of  ∠∠∠∠ ABC .      [ Hint :  Let  B  
be a point not on  L  such that there are at least two parallel lines to  L  through  B.  If  Y  
is the foot of the perpendicular from  B  to  L  and  M  is a line through  B  which is 
perpendicular to  YB, then  M  is parallel to  L, and there is also a second line  N  which 
is parallel to  L.  Explain why there is a ray  [BA  on  N  such that  A  lies on the same 
side of  M  as  Y, and explain why there is also a ray  [BC  on  M  such that  C  and  A  

lie on opposite sides of  BY.  Why is  L  disjoint from  ∠∠∠∠ ABC, why does the point  Y  on  
L  lie in the interior of this angle,  and why does this imply that the entire line is contained 

in the interior of  ∠∠∠∠ ABC ? ] 

 

Note.   In fact, it turns out that every angle  ∠∠∠∠ ABC  in a hyperbolic plane  P  
contains a line (in fact, infinitely many lines) in its interior.  One way of seeing this is 

to use the Beltrami – Klein model for hyperbolic geometry described later in Section  

V.6.   An illustration is given below; as noted in Section  V.6, the points in the model are 
the points inside the boundary circle, and the lines in the model are open chords whose 
endpoints lie on the boundary circle. 
 

 
 

In this picture,  ∠∠∠∠ ABC  is given in the Beltrami – Klein model of the hyperbolic 
plane (the interior of the disk, with the boundary excluded), and L is just one 
example (among infinitely many) of a line which is contained entirely in the 

interior of  ∠∠∠∠ ABC.    —  This contrasts sharply with Euclidean geometry, where  

a line containing a point of the interior of ∠∠∠∠ ABC must meet the angle in at 

least one point.  [ Proof :  Suppose that  L  contains an interior point X of the 
angle; if  A  lies on  L  the result is true, so it suffices to consider the case where  
A  does not lie on  L.  By Playfair’s Axiom we know that at least one of the lines  
BA  and  BC  must have a point in common with  L.  Interchanging the roles of  A  
and  C  if necessary, we may assume that  BC  meets  L  at some point.  If this 
common point  Y  lies on  [ BC  we are done, so suppose it does not; in this case 
we know that  B  is between  Y  and  C.  The latter implies that  Y  and  C  lie on 
opposite sides of  AB; since  X  and  C  are assumed to lie on the same side of  
BA,  it follows that the open segment  (XY)  meets  AB  at some point  D.  Since  



D  is between  X  and  Y,  and  Y  lies on  BC,  it follows that  X  and  D  lie on the 
same side of  BC,  and since  A  and  X  also lie on the same side of  AC  (by the 
assumption on  X)  it follows that the rays  [ BA  and  [ BD  are identical.  But this 
means that  L  and  [ BA  have a point in common; thus we see that in all cases 

the line  L  has at least one point in common with  ∠∠∠∠ ABC.   —  The drawing 
below may be helpful for understanding the argument we have described in this 

paragraph.� ] 

 

 

 

V.5 : Further topics in hyperbolic geometry 
 

No exercises. 

 

V.6 : Subsequent developments 
 

No exercises. 

 

 

V.7 : Non – Euclidean geometry in modern mathematics 
 

 
The following exercises are related to the geometric properties of 

the Poincaré disk model for the hyperbolic plane. 
 

1.  Let   a  be a vector in     RRRR
2
,  let r > 0,  and let ΓΓΓΓ( r ; a)  denote the circle in RRRR

2
  

with center  a  and radius  r.  The transformation  
 

)(
||

)(
2

2

av
av

avT −−−−⋅⋅⋅⋅
−−−−

++++====
r  

 

is called inversion with respect to the circle  ΓΓΓΓ( r ; a).   It is defined for all  v  ≠  a,  

and its image is the same set.    Prove that  T  is  1 – 1  onto, and in fact for all v  ≠  a 

the point T(v)  lies on the ray through  v  with origin  a  such that  |T(v) – a| · |v – a|    
=   r 

2
;  using this description,  explain why  T  is equal to its own inverse.  

 

Note.  Two motivations for the name “inversion” are that  T  is its own inverse and if we 

view points in     RRRR
2
 as complex numbers, then inversion with respect to the standard 

unit circle ΓΓΓΓ( 1 ; 0)  sends a complex number  z  to the  conjugate  of  z
 – 1

.   Another 

simple formula for this specific inversion mapping  T,  which is also valid on   RRRR
n
  for all 

positive integers  n,  is given by  T(v)  =  |v| 

– 2 
v. 

 



The drawing below may be useful for visualizing the inversion T:  Both  v  and  T(v)  lie 
on the same ray through the center  a  of the circle, and their distances to the center 

satisfy the equation   d (a, v) ∙ d (a, T(v) )   =   r 

2
. 

 

 
 

(Source:  http://www.jgiesen.de/HollowEarth/index.html) 
 

2.  Let  T  and  S  be inversions with respect to the circle ΓΓΓΓ( 1 ; 0) and ΓΓΓΓ(  r ; 0),  

where r  >  0.  Prove that  S(v)  =  r T(r 
 – 1 

v)  for all nonzero vectors v. 
 

3.  Let  T  be inversion with respect to the standard unit circle ΓΓΓΓ( 1 ; 0),  let  ΓΓΓΓ1  be a 

circle which does not contain the origin,  and let  ΓΓΓΓ2  be the set of all points of the form  

T(v)  for some point  v  on  ΓΓΓΓ1.    Prove that  ΓΓΓΓ2  is also a circle.       [ Hints :  There are 

two cases, depending upon whether or not the origin is the center of  ΓΓΓΓ1.  If the center of 

the latter is the origin and the radius is  k,  explain why  ΓΓΓΓ2  is the circle whose center is 

the origin and whose radius is  1/k.  On the other hand, if the center  a  of  ΓΓΓΓ1  is not the 

origin, then explain why  |a|  ≠  k  and therefore  q  =  | a| 

2
 –  k 

2
  is nonzero.  Show 

that the dot product  2 a · v  =  | v|
2
  +  q  and if  v lies on ΓΓΓΓ1 , then the distance between  

T(v)  and the vector  q
 –

 

1
 a  is equal to  |q | 

– 1
 k.   This shows that  ΓΓΓΓ2  is contained in a 

circle; to prove that every point of this circle is the image of a point in  ΓΓΓΓ1,  show that  T  

also maps the circle described above into  ΓΓΓΓ1.]   
 

4.  Let  T  be inversion with respect to the standard unit circle ΓΓΓΓ( 1 ; 0),  and let  ΓΓΓΓ1  

be the circle defined by the equation  x
 2

  +  (y – b)
 2

   =    b 

2
,  where  b  is positive.   

Show that the image of the nonzero points in  ΓΓΓΓ1  under  T  is the horizontal line defined 

by the equation  y  =  1/ (2 b).   As in the preceding exercise, there are two parts:  The 

first step is to show that  T  maps the nonzero points of  ΓΓΓΓ1  into the horizontal line, and 

the second is to show that  T  maps the points of the given horizontal line into  ΓΓΓΓ1. 
 

5.  Let  T  be inversion with respect to the standard unit circle ΓΓΓΓ( 1 ; 0),  and let  ΓΓΓΓ1 

be the circle defined by the equation  (x – 1)
 2

  +  (y – 1)
 2

   =   1 .  Prove that the 

circles ΓΓΓΓ( 1 ; 0)  and  ΓΓΓΓ1  meet in two points and that their tangent lines are 

perpendicular at these two points.  Also, prove that if  v  is a point of the circle  ΓΓΓΓ1  then 

so is its image  T(v) .      [ Hints :  There is a unique circle which passes through three 

noncollinear points, so if T sends three points of  ΓΓΓΓ1  into  ΓΓΓΓ1  it must send all points of  



ΓΓΓΓ1   into  ΓΓΓΓ1.   It may also be very helpful to graph the two circles before trying to solve 
this exercise; a sketch is given below. ]   

 
 

6.  Let  ΓΓΓΓ0   =   ΓΓΓΓ( 1 ; 0),   let  Q  =  (0, 0),  and let  ΓΓΓΓ1   be a circle  of radius  r  

with center  Z  =  (c, 0),   where  c  >  0,  such that  ΓΓΓΓ1  meets the  x – axis at points  

(a, 0) and  (b, 0),  where  0  <  a  <  1  <  b;  under these conditions the Two – Circle 

Theorem implies that  ΓΓΓΓ0  and  ΓΓΓΓ1  meet at two points, say  B  and  C.  (1, 1) 
 

(i) Prove that the two circles meet orthogonally (in other words,        QB  is 

perpendicular to  ZB  and  QC  is perpendicular to  ZC)  if and only if  b  =  

1/a.        [ Hints :  One can solve for  r  and  c  in terms of  a  and  b  because  

Z  is the midpoint of the segment joining  (a, 0)  to  (b, 0)  and  2r  =  b – a.   
Apply the Pythagorean Theorem and its converse. ]   

 

(ii) Using the first part of this exercise, prove that if  Y  is an arbitrary point in the 

interior of  ΓΓΓΓ0  such that  Y  is not the circle’s center, then there is a circle  ΓΓΓΓ1 

which contains  Y  and meets  ΓΓΓΓ0  orthogonally. 
 

(iii) Suppose that  ΓΓΓΓ0  and  ΓΓΓΓ1  satisfy the conditions in the first part of this 

exercise.  Let  T  be inversion with respect to  ΓΓΓΓ0.  Prove that  v  lies on  ΓΓΓΓ1  if 
and only if  T(v)   does. 

 

Here is a drawing to illustrate the objects in this exercise. 
 

 
 

By the Pythagorean Theorem and its converse, there is a right angle at  B  if and only if 

we have   r
 2

 + 1 = c 

2
. 


