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I . Topics from linear algebra

I.0 : Background

1. Suppose that {x,y} is linearly dependent. Then there are scalars a, b which are not
both zero such that ax + by = 0. — In fact, we claim that both a and b must be nonzero. If
a = 0 then the equation reduces to by = 0, where both factors on the right hand side are nonzero.
Since a product of a nonzero scalar and a nonzero vector is never zero, this is impossible. This
contradiction arises from our supposition that a was zero, and hence we see that a 6= 0. Similar
considerations show that b must also be nonzero. Since we now know that a and b are both nonzero,
it follows that

y = b−1ax and x = a−1by

and hence x and y are nonzero multiples of each other.

Conversely, suppose we know that x = py or y = qx where (respectively) p or q is nonzero.
Then we have (resepectively) x−py = 0 and qx−y = 0, which shows that the set {x,y} is linearly
dependent.

2. Assume the conclusion is false, so that S ∪ {z} is linearly dependent. Then there exist
scalars a1, · · · , an, b which are not all zero such that

a1v1 + · · · + anvn + b z = 0 .

We claim that b 6= 0; if on the contrary we have b = 0, then at least one of the remaining scalars aj

must be nonzero and it will follow that {v1, · · · ,vn } must be linearly dependent, contradicting
our hypothesis.

Sine b 6= 0 we can solve for z to obtain

z = −
(

b−1a1v1 + · · · + b−1anvn

)

which contradicts our hypothesis that z is not a linear combination of the vectors in {v1, · · · ,vn }.
The source of this contradiction is the assumption that the linear independence conclusion is false,
and therefore it follows that the set S ∪ {z} must be linearly independent.

3. We shall show that the original set S is linearly dependent if and only if the second set
T = { c1v1, · · · , cnvn } is linearly dependent. If S is dependent then there exist scalars a1, · · · , an

which are not all zero such that

a1v1 + · · · + anvn = 0 .

Clearly we may rewrite this in the form

(a1c
−1

1
)c1v1 + · · · + (anc−1

n )cnvn = 0
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and since the scalars cj are not all zero it follows that the scalars a1c
−1

1
, · · · , anc−1

n are also not all
equal to zero. Therefore the set T is linearly dependent. — Conversely, if T is linearly dependent,
then there exist scalars b1, · · · , bn which are not all zero such that

b1c1v1 + · · · + bnc1vn = 0 .

Since the numbers cj are not all zero, it follows that the numbers aj = bjcj are not all zero and
that

a1v1 + · · · + anvn = 0

which means that S must be linearly dependent.

4. We shall show that if S is linearly dependent then so is T [S], and if T [S] is linearly
dependent then so is S,

Suppose first that T is linearly dependent, so that there exist scalars a1, · · · , an which are not
all zero such that

a1v1 + · · · + anvn = 0 .

By the linearity of T it follows that

a1T (v1) + · · · + anT (vn) = 0

and hence T [S] is linearly dependent.

Now suppose that S is linearly independent. Suppose we have scalars aj for which

a1T (v1) + · · · + anT (vn) = 0 .

Now the linearity of T implies the left hand side is equal to

T
(

a1v1 + · · · + anvn

)

and hence T sends the vector a1v1 + · · · +anvn to zero. Since T is 1–1 and T sens the zero vector
to the zero vector, it follows that

a1v1 + · · · + anvn = 0 .

The linear independence of S now implies that aj = 0 for all j, and therefore we see that T [S]
satisfies the defining condition for a linearly independent set.

I.1 : Dot products

1. The answer is −6.

2. The answer is 2.

3. The answer is 1.

4. The two vectors are not perpendicular because their dot product is equal to 4, but they
are linearly independent because neither is a scalar multiple of each other (and both are nonzero);
the latter is apparent because every scalar multiple of the first vector has a zero in the second
coordinate and this is not true for the second vector.

2



5. They are perpendicular because their dot product is zero. Both vectors are nonzero so
they are linearly independent.

6. The two vectors are perpendicular because their dot product is equal to −2+3− 1 = 0,
and since they are both nonzero they are also linearly independent.

7. Let x = (k, k, 0) and y = (0, k, k), so that we have the following:

x− z = 1

2
(k, k,−k) y − z = 1

2
(−k, k, k)

∣

∣x − z
∣

∣ =
∣

∣y − z
∣

∣ =
k
√

3

2

(

x − z
)

·
(

y − z
)

=
−k2

4

If we substitute this into the formula for cos 6 xzy we find that the latter is equal to − 1

3
, so that

| 6 xzy | = Arc cos(− 1

3
) ≈ 109.47122◦ .

8. This and the following exercises are based upon the following identities:

u0 =
u · v
v · v · v , u1 = u− u0

For the examples in this problem we have u · v = 13 and v · v = 26, so that u0 = 1

2
v = ( 5

2
, 1

2
) and

u1 = u− u0 = (− 1

2
, 5

2
).

9. For the examples in this problem we have u ·v = 11 and v ·v = 25, so that u0 = 11

25
v =

(0, 33

25
, 44

25
) and u1 = u − u0 = (2,− 8

25
, 6

25
). Note. In problems like this it is always a good idea

to check the correctness of the calculuations by computing the dot product of u1 with v explicitly
and checking that it is equal to zero.

10. For the examples in this problem we have u · v = 21 and v · v = 26, so that
u0 = 21

26
v = (− 21

26
, 78

26
, 104

26
) and u1 = u − u0 = 1

26
(151, 93,−32). — Given the relatively complex

nature of the answer, it is particularly important in this case to check the perpendicularity condition
as in the preceding exercise.

11. For the examples in this problem we have u · v = −4 and v · v = 14, so that
u0 = − 2

7
v = (− 4

7
,− 2

7
, 6

7
) and u1 = u− u0 = (− 3

7
, 9

7
, 1

7
).

12. We shall take these in order.

(a) If we expand the expression given in this part of the problem we obtain

u · v + u ·w + v · v + v · w =

2 + 5 + 4 + 49 = 60 .

(b) If we expand the expression given in this part of the problem we obtain

6(v · u) − 3(w · u) + 4(v · w) − 2(w ·w) =

(6 · (−3) ) − (3 · 5) + (4 · (−3) ) − (2 · 49) = −18 − 15 − 12 − 98 = −143 .

(c) If we expand the expression given in this part of the problem we obtain

4(u · u) − 4(u · v) + 8(w · u) + (u · v) − (v · v) − 2(w · v) =

3



(4 · 1) − (4 · 2) + (8 · 5) + 2 − 4 − (2 · (−3) ) =

4 − 8 + 40 − 2 + 6 = 40 .

(d) If we expand the square of the expression given in this part of the problem we obtain

(u · u) + 2(u · v) + (v · v) =

1 + (2 · 2) + 4 = 9 .

Thus the value of the original expression is 9.

(e) If we expand the square of the expression given in this part of the problem we obtain

4(w · w) 4(w · v) + (v · v) =

(4 · 49) − (4 · (−3) ) + 4 = 196 + 12 + 4 = 212 .

(f) If we expand the square of the expression given in this part of the problem we obtain

(u · u) − 4(u · v) − 8(u · w) − 16(v · w) + 4(v · v) + 16(w ·w) =

1 − (4 · 2) − (8 · 5) − (16 · (−3) ) + (4 · 4) + (16 · 49) = 8001 .

13. Again, we take each part separately:

(a) The orthonormal basis is given by the rows of the following matrix:

1√
6
·





√
3

√
3 0

−1 1 2√
2 −

√
2

√
2



 .

(b) The orthonormal basis is given by the rows of the following matrix:

1√
6
·







1 0 0 0
0 2

√
3 0 2

√
3

0 1 2 −1
0 −

√
2

√
2

√
2






.

(c) The orthonormal basis is given by the rows of the following matrix:

1√
6
·





1 2 1
−
√

2
√

2 −
√

2
−
√

3 0
√

3



 .

14. By the Pythagorean Formula, if x and y are perpendicular vectors we have

|x + y|2 = |x|2 + |y|2

and if we use this repeatly on a set of mutually perpendicular vectors x1, · · · ,xn we obtain the
formula

|x1 + · · · + xn|2 = |x1|2 + · · · + |xn|2 .
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We know that w =
∑

j cj vi for suitable coefficients cj , and if we take inner products of both
sides with the vectors vi in the orthonormal basis we find that ci = 〈w, vi〉 for all i. On the other
hand, the displayed formula implies that

|w|2 =
∑

i

c2

i

so if we substitute the values for ci as above we obtain the formula to be shown in the exercise.

15. (a) By definition the projection is defined by

P (w) =
w · (1, 2,−1)

6
· (1,−2, 1)

and if we write w = (x, y, z) the right hand side becomes

x2y − z

6
· (1, 2,−1) .

(b) We find the matrix by evaluating the preceding expression at the standard three unit
vectors and writing the resulting three vectors in column form. Here is the numerical answer:

1

6
·





1 2 −1
2 4 −2
−1 −2 1





16. By the reasoning of Exercise 14 we know that

|x + y|2 = |x|2 + |y|2 = |x|2 + | − y|2 = |x − y|2

so the lengths are equal. On the other hand, since x and y are orthogonal we have

〈x + y, x− y〉 = |x|2 − |y|2

and since x and y have the same lengths this expression is equal to zero, proving orthogonality.

I.2 : Cross products

1. The cross product is given by the formal determinant

∣

∣

∣

∣

∣

∣

i j k

2 −3 1
1 −2 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

−3 1
2 1

∣

∣

∣

∣

· i −
∣

∣

∣

∣

2 1
1 1

∣

∣

∣

∣

· j +

∣

∣

∣

∣

2 −3
1 −2

∣

∣

∣

∣

· k

which is equal to −i− j − k = (−1,−1,−1).

2. The cross product is given by the formal determinant

∣

∣

∣

∣

∣

∣

i j k

12 −3 0
−2 5 0

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

−3 0
−5 0

∣

∣

∣

∣

· i −
∣

∣

∣

∣

12 0
−2 0

∣

∣

∣

∣

· j +

∣

∣

∣

∣

12 −3
−2 5

∣

∣

∣

∣

· k
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which is equal to 54k = (0, 0, 54).

3. The cross product is given by the formal determinant

∣

∣

∣

∣

∣

∣

i j k

1 1 1
2 1 −1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
1 −1

∣

∣

∣

∣

· i −
∣

∣

∣

∣

1 1
2 −1

∣

∣

∣

∣

· j +

∣

∣

∣

∣

1 1
2 1

∣

∣

∣

∣

· k

which is equal to −2i + 3j− k = (−2, 3,−1).

4. The box product is the 3 × 3 determinant

∣

∣

∣

∣

∣

∣

2 0 1
0 3 0
0 0 1

∣

∣

∣

∣

∣

∣

= 6 .

5. We already know that

a× (b × c) = (a · c)b − (a · b)c

and hence we also have

(a × b) × c = −c× (a × b) = c × (b × a) = (a · c)b − (b · c)a .

To solve this problem and others which follow, we merely substitute for the three vectors in question.

For this problem we have a = (2, 0, 1), b = (0, 3, 0), and c = (0, 0, 1). It follows that

a× (b× c) = 1 · (0, 3, 0) − 0 · (0, 0, 1) = (0, 3, 0) .

Likewise, we have

(a × b) × c = 1 · (0, 3, 0) − 0 · (2, 0, 1) = (0, 3, 0) .

6. The box product is the 3 × 3 determinant

∣

∣

∣

∣

∣

∣

1 1 0
0 1 1
1 0 1

∣

∣

∣

∣

∣

∣

= 2 .

7. For this problem we have a = (1, 1, 0), b = (0, 1, 1), and c = (1, 0, 1). It follows that

a× (b × c) = 1 · (0, 1, 1) − 1 · (1, 0, 1) = (−1, 1, 0) .

Likewise, we have

(a× b) × c = 1 · (0, 1, 1) − 1 · (1, 1, 0) = (−1, 1, 0) .

8. The box product is the 3 × 3 determinant

∣

∣

∣

∣

∣

∣

1 3 1
0 5 5
4 0 4

∣

∣

∣

∣

∣

∣

= 20 + 60 − 20 = 60 .
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9. For this problem we have a = (1, 3, 1), b = (0, 5, 5), and c = (4, 0, 4). It follows that

a× (b × c) = 8 · (0, 5, 5) − 20 · (4, 0, 4) = (−80, 40,−80) .

Likewise, we have

(a × b) × c = 8 · (0, 5, 5) − 20 · (1, 3, 1) = (−20,−100, 20)

and thus we FINALLY have an example where the two products a × (b × c) and (a × b) × c are
unequal.

10. Let C be the 2 × 3 matrix whose first and second rows are a and b respectively.
Then the set of all vectors perpendicular to a and b corresponds to the solution subspace for the
equation CX = 0 (we say “corresponds to”because the solutions are really 3 × 1column vectors
and we are using the obvious identification of the latter with R3. The rank of this matrix is 2, so
the dimension of the space of solutions is equal to 1 by fundamental results from linear algebra.
Therefore, if w is a nonzero vector which is perpendicular to a and b, then every other vector v

which is perpendicular to the latter must be a scalar multiple of w, and if v is nonzero it must be
a nonzero multiple of w. But we know that z × b is a nonzero vector which is perpendicular to a

and b, so in particular, if v is as before then it must be a nonzero multiple of a× b.

11. Following the hint, we shall begin with the Jacobi identity

c × (a × b) + a× (b× c) + b× (c × a) = 0

and then we shall subtract the second and third terms from both sides to obtain the following:

D(a× b) = c× (a × b) = −a× (b × c) − b× (c × a)

Since a cross product changes sign if the order of the factors is reversed, the right hand side of the
preceding equation is equal to

a× (c × b) + (c × a) × b = a× D(b) + D(a) × b

which is the identity to be verified in the exercise.

I.3 : Linear varieties

1. By the definitions, we know that (2, 3, 1) lies on both lines.

2. Let us consider the general problem of finding a common point on two lines given by
the vector pairs (a1, b1) and (a2, b2). The two lines have a point in common if and only if there
are scalars t and u such that

a1 + tb1 = a2 + ub2 .

One can rephrase this to say that a common point exists if and only if a1−a2 is a linear combination
of b1 and b2. Now the latter two vectors are linearly independent in this problem, and if we let
Bi and Ai be the column vectors associated to ai and bi, then the lines have a point in common
if and only if the system of three equations in two unknowns

(B1 B2) · X = A1 − A2
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has a solution. Since B1 and B2 are linearly independent, the standard results on solutions of linear
equations systems implies that the system above has a solution if and only if the rank of the 3 × 3
matrix

(

B1 B2 [A1 − A2]
)

is equal to 2.

If we apply this to the specific example in the problem, we have b1 = (3,−1, 1), b2 = (4, 1,−3)
and a1 − a2 = (−1, 4, 2), so that we obtain the following matrix:





3 4 −1
−1 1 4
1 −3 2





The determinant of this matrix turns out to be nonzero, and therefore the matrix has rank 3. By
the preceding discussion, it follows that the two lines cannot have a point in common.

3. We start with the same general discussion as in the previous exercise, but here the
relevant vectors are given as follows:

b1 = (2, 5,−1)

b2 = (−2, 1, 2)

a1 = (3,−2, 1)

a2 = (7, 8,−1)

a1 − a2 = (4, 10, 0)

Therefore the crucial 3 × 3 matrix is given as follows:





2 −2 4
5 1 10
−1 2 0





Once again the determinant of the matrix is nonzero, so the lines do not have any points in common.

4. Since (0, 0, 0) lies on this plane, it is a 2–dimensional vector subspace, and a spanning
set is given by the remaining two points (1, 2, 3) and (−2, 3, 3). Since these two vectors are linearly
independent, it follows that the plane we are trying to describe is the set of all vectors (x, y, z)
which are perpendicular to the cross product (1, 2, 3)×(−2, 3, 3); therefore it is the set of all (x, y, z)
satisfying the equation

∣

∣

∣

∣

∣

∣

x y z

1 2 3
−2 3 3

∣

∣

∣

∣

∣

∣

= 0 .

We can rewrite this in the more traditional form −3x− 9y + 7 = 0. As usual, one should check the
correctness of the calculations with a verification that the original points all lie on this plane.

5. More generally, if a, b, and c are noncollinear points in R3, then the plane containing
them is given by the box product equation

[

b− a; c − a;x − a
]

= 0 .
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In this problem we have a = (1, 2, 3), b = (3, 2, 1), and c = (−1,−2, 2). Therefore the equation for
the plane becomes

∣

∣

∣

∣

∣

∣

(x − 1) (y − 2) (z − 3)
2 0 −2
−2 −4 −1

∣

∣

∣

∣

∣

∣

= 0 .

If we expand the determinant and simplify, we obtain the equation −8x + 6y − 8z = −20, which
we may also rewrite as 8x − 6y + 8z = 20. Once again, direct calculations verify that the three
original points all lie on this plane.

6. A plane which is parallel to the xy–plane has an equation of the form z = K, where K is
some constant. The plane containing a point (p, q, r) will have the form z = r. In this case r = 3,
so the equation for the plane in this problem is z = 3.

7. The plane has an equation of the form Ax + By + Cz + D = 0, where we know that
(A,B,C) is perpendicular to both (−2, 1, 1) and (−3, 4,−1). Therefore, up to multiplication by a
nonzero scalar we know that (A,B,C) is the cross product of the given two vectors. This cross
product is equal to (−5,−5,−5), and thus we know that A = B = C. Dividing the equation by
A, we see that the plane has an equation of the form x + y + z + D ′ = 0. We can evaluate D′

by evaluating x + y + z at any point of the plane; in particular, if we do so at the point (1, 4, 0)
which lies on L (hence also on P ), we see that D ′ = −5 and hence the equation of the plane is
x + y + z = 5. One can check directly that all points of both L and M lie on this plane.

8. Probably the simplest way to do this is to use row reduction to find the solutions for
the system of equations determined by the intersecting planes. In other words, we need to put the
augmented matrix

(

5 −3 1 4
1 4 7 1

)

into row reduced echelon form using elementary row operations; the new matrix will have the same
solutions. The row reduced echelon matrix obtained in this fashion is equal to

1

23
·
(

23 0 25 19
0 23 34 1

)

.

This yields the equations

x =
19 − 25z

23
y =

1 − 34z

23

and if we set t = 23z, then the line is the set of all points of the form

(

19

23
,

1

23
, 0

)

+ t (−25,−34, 1)

where t runs through all possible scalars.

9. On an elementary level, this can be seen by noting that if a and p are linearly independent,
then the 2× 2 matrix whose rows are these vectors will have a nonzero determinant, and hence the
system of equations a · x = b, p · x = q has a solution by Cramer’s Rule. Thus the only way there
can be no solutions is if the vectors a and p are linearly dependent.

10. A linear variety is given by a system of linear equations. If varieties V1 and V2 are given
by such lists of equations, then their intersection is defined by the linear equations on both of these
lists, and hence it is also a linear variety.
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11. Suppose that x lies in the intersection. Then we may write H = x+V and K = x+W ,
where V and W are (n − 1)–dimensional vector subspaces, and it follows that

H ∩ K =
(

x + V
)

∩
(

x + W
)

= x + (V ∩ W ) .

If n ≥ 3, then the dimension formula for intersections of vector subspaces implies that dim(V ∩W ) ≥
1. If U is a 1–dimensional subspace of V ∩ W , then the line x + U is contained in

x + (V ∩ W ) = H ∩ K .

If we also have N ≥ 4, then the dimension formula implies dim(V ∩W ) ≥ 2. If U is a 2–dimensional
subspace of V ∩ W , then the plane x + U is contained in x + (V ∩ W ) = H ∩ K.

12. Suppose that x ∈ S ∪T . Then either (ai ·x)− bi = 0 for all i or else (cj ·x)− dj = 0
for all j. In either case the products

(ai · x − bi) · (cj · x− dj) = 0

for all i and j, and hence S ∪ T is contained in the set of all points satisfying these equations.
Conversely, suppose that x does not lie in S ∪ T . Since x does not lie in S, it follows that there is
some integer P for which (aP ·x− bP ) 6= 0. Likewise, since x does not lie in T there is some integer
Q such that (cQ · x − dQ) 6= 0. If we multiply these equations together we find that

(aP · x− bP ) · (cQ · x− dQ) 6= 0

which means that x does not lie in the set of points satisfying the given set of equations.

13. Suppose first that the points {P1, · · · , Pn} are coplanar. Suppose that the plane
containing them is defined by the equation Kx+Ly+Mz+N = 0, where (K,L,M) 6= (0, 0, 0). Let
W be the vector subspace of R4 consisting of all vectors which are perpendicular to (K,L,M,N),
or equivalently to the 1-dimensional subspace spanned by that vector. Then as in the proof of
Proposition 2, it follows that W is 3-dimensional. Furthermore, since the vectors Pi lie on the
given plane, it follows that the vectors qi belong to the subspace W , and hence the subspace W ′

spanned by the vectors qi, so that W ′ is contained in the proper subspace W and hence must be
a proper subspace itself.

Conversely, suppose that the span W ′ is a proper subspace, and let U = (W ′)⊥. As in the
proof of Proposition 3, we know that U has a positive dimension and hence contains some nonzero
vector (K,L,M,N). It follows that

Kai + Lbi + Mci + N = 0, where 1 ≤ i ≤ n .

If one of K,L,M is nonzero, then these equations imply that the points Pi lie on the plane defined
by the equation Kx + Ly + Mz + N = 0.

Suppose now that K = L = M = 0; it follows that N must be nonzero. However, now the
displayed equations become

N = 0 · ai + 0 · bi + 0 · ci + N = 0

which contradicts the conclusion of the preceding sentence. This means that at least one of K,L,M

must be nonzero, and by the preceding paragraph this means that the given points are coplanar.

NOTE. The preceding exercise yields a computational test to determine whether a finite set of
points is coplanar. If the original points are given by Pi, let qi be constructed as in the preceding
solution, and let A be the n × 4 matrix whose rows are the vectors qi. Then the original set of
vectors is coplanar if and only if the row-reduced echelon form of A has at most 3 nonzero rows.
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