SOLUTIONS TO ADDITIONAL EXERCISES FOR II. 1 AND II. 2

Here are the solutions to the additional exercises in betsepexercises.pdf.
B1. Let \mathbf{y} and \mathbf{z} be distinct points of L; we claim that \mathbf{x}, \mathbf{y} and \mathbf{z} are not collinear. If there were some line M containing them, then we would have $M=L$ since both lines contain the last two points; however, we know that $\mathbf{x} \notin L$, so this is impossible.

To show the existence of a plane containing L and \mathbf{x}, let P be the unique plane containing \mathbf{x}, \mathbf{y} and \mathbf{z}. Since \mathbf{y} and \mathbf{z} are in P, the axioms imply that the line joining them, which is L, must be contained in P. To see that there is only one plane containing L and \mathbf{x}, notice that a plane Q which contains both of these will automatically contain \mathbf{y} and \mathbf{z}. Since there is only one plane containing \mathbf{x}, \mathbf{y} and \mathbf{z}, it follows that Q must be identical to P.■

B2. By the previous exercises, there is a unique plane P containing X and K. Let A, B, C be the points where K meets the lines L, M, N respectively. Then we have the following:
(1) Since X and A lie on P, the line $X A=L$ is contained in P.
(2) Since X and B lie on P, the line $X B=M$ is contained in P.
(3) Since X and C lie on P, the line $X C=N$ is contained in P.

Therefore P contains each of the lines K, L, M, N.■
B3. Since $A * B * C$ and $X * Y * Z$ are assumed, the conditions on the distances imply that

$$
d(A, B)=d(A, C)-d(B, C)=d(X, Z)-d(Y, Z)=d(X, Y)
$$

which is what we wanted to prove.■
B4. If $X \in(A B)$, then $A * X * B$ is true. By assumption, we have $A * B * C$ and therefore Proposition II. 4 implies that $A * X * C$ is true, so that $X \in(A C)$. [Note: We are actually using an alternate form of this result; namely, $W * U * T$ and $W * V * U$ imply $W * V * T$. However, this follows from the stated form $-T * U * W$ and $U * V * W$ imply $T * V * W$ because $P * Q * R$ and $R * Q * P$ are equivalent conditions.]

B5. Both of the rays $[A B$ and $[B A$ are contained in the line $A B$, so we have $[A B \cup[B A \subset A B$. Conversely, suppose that $X \in A B$, and write $X=A+t(B-A)$ for some scalar t. If $t \neq 0$ then $X \in[A B$, while if $t<0$ then we have $X * B * A$, and in fact we also have

$$
X=B+(1-t)(B-A)
$$

Since $t<0$, it follows that $1-t>1$ and therefore $X \in[B A$.
B6. Since $A * B * C$ holds, we know that $C=A+v(B-A)$ where $v>1$.

If $X \in[A B]$, then $X=A+t(B-A)$ where $0 \leq t \leq 1$ and hence $X \in[A B$. If $X \in[B C$, then $X=B+s(C-B)$ where $s \geq 0$; using the equation in the preceding paragraph, we may use this to rewrite X as a linear combination of A and B as follows:
$X=B+s[A+v(B-A)-B]=(1+v s-s) B+(s-v s) A=A+(1+v s-s)(B-A)$
Since $s \geq 0$ and $v>1$, it follows that $1+s-v s>1$, and therefore we see that $X \in[A B$. Hence $[A B] \cup[B C$ is contained in $[A B$.

Conversely, suppose that $X \in[A B$ and write $X=A+t(B-A)$ where $t \geq 0$. If $t \leq 1$, then we know that $X \in[A B]$. Suppose now that $t>1$. By the equation in the first paragraph we have

$$
A=\frac{1}{1-v} C+\frac{-v}{1-v} B
$$

and therefore after substitution and some algebraic calculation we may rewrite X as a linear combination of B and C as follows:

$$
X=B+\frac{1-t}{1-v}(C-B)
$$

Since $t, v>1$ it follows that the numerator and denominator of $(1-t) /(1-v)$ are both negative, so that the quotient is positive, and therefore it follows that X must lie on $[B C$. Hence we have $[A B \subset[A B] \cup[B C$, and if we combine this with the previous paragraph we conclude that $[A B=[A B] \cup[B C . \square$

B7. We shall follow the hint and eliminate all of the alternatives. In both cases the points X and Y are on M but not equal to A, and since L and M can only have the point A in common it follows that neither X nor Y lies on L. Therefore in each case either X and Y lie on the same side of L or else they lie on opposite sides of L.

For part (a), we are given that $A * X * Y$, and we want to show that X and Y cannot lie on opposite sides of L. However, if they did, then there would be some point C such that $C \in L$ and $X * C * Y$. Now C would have to be a point of M, and since A is the only common point of L and M it would follow that $A=C$, so that $X * A * Y$. However, we know that $A * X * Y$, and thus we cannot have $X * A * Y$. This is a contradiction, and the source is our assumption that X and Y were on opposite sides of L; hence they must be on the same side of L.

For part (b), we are given that $X * A * Y$, and we want to show that X and Y cannot lie on the same side of L. But if they did, then by convexity all points of $(X Y)$ would also lie on that half-plane, and we know that $A \in(X Y) \cap L$ does not. This is a contradiction, and the source is our assumption that X and Y were on the same side of L; hence they must be on opposite sides of L.■

B8. We first observe that all points of ($A C$ lie on a common side of $A B$, and likewise for $(B D$. If $X \in(A C$, then either $X=C, A * C * X$ or $A * X * C$ holds. In each case X lies on the same side of $A B$ as C. The proof for ($B D$ can be obtained by replacing A and C with B and D respectively.

By assumption, C lies on one side of $A B$, say H, and D lies on the other, say K. We can now use the preceding paragraph to conclude that $(A C \subset H$ and $(B D \subset K$. Since H and K have no points in common, the same is true for $(A C$ and $(B D$. Furthermore, since $A C$ meets $A B$ in A and $B D$ meets $A B$ in B, it follows that A cannot lie on $[B D$ and B cannot lie on $[A C$. If we combine the conclusions of the preceding two sentences, we see that $[A C$ and $[B D$ have no points in common.

B9. We know that $[A B]$ is contained in $\triangle A B C \cap A B$. We shall follow the hint and show that if $X \in \triangle A B C$ but $X \notin[A B]$, then $X \notin A B$.

If $X=C$, then the conclusion follows because $C \notin A B$ by assumption. We are now left with the cases where $X \in(A C)$ or $X \in(B C)$; since the argument in the second case is the same as the argument in the first with A replaced by B, it is enough to show that $X \notin A B$ if $X \in(A C)$. If we did have $X \in(A C)$ and $X \in A B$, then it would follow that the line L containing A and X would be equal to $A B$. But A, X, C all lie on a single lie by assumption, and this line must be $L=A B$, which means that all three vertices of $\triangle A B C$ would lie on L. This is a contradiction, and the source is our assumption that $(A C)$ and $A B$ have a point in common. Therefore $(A C)$ and $[A B]$ do not have any points in common; as noted before the same conclusion will follow for $(B C)$ and $[A B]$, and thus we see that no points of $[A C]-\{A\}$ or $[B C]-\{B\}$ can lie on the line $A B$, so that $\triangle A B C \cap A B$ must be equal to $[A B]$.

B10. In each of these problems, we need to rewrite the line equation in the form $g(x, y)=0$, and then we need to compare the signs of $g(X)$ and $g(Y)$.
(a) In this case we may take $g(x, y)=9 x-4 y-7$. We have $g(3,6)=-3<0$ and $g(1,7)=-26<0$, so the two points lie on the same side of $L . ■$
(b) In this case we may take $g(x, y)=3 x-y-7$. We have $g(8,5)=12>0$ and $g(-2,4)=-29<0$, so the two points lie on opposite sides of $L . ■$
(c) In this case we may take $g(x, y)=2 x+3 y+5$. We have $g(7,-6)=1>0$ and $g(4,-8)=-11<0$, so the two points lie on opposite sides of $L . ■$
(d) In this case we may take $g(x, y)=7 x+3 y-2$. We have $g(0,1)=1>0$ and $g(-2,6)=2>0$, so the two points lie on the same side of L.

SOLUTIONS TO ADDITIONAL EXERCISES INVOLVING CONVEX FUNCTIONS

Here are the solutions to the additional exercises in cvxfcnexercises.pdf.

K0. We shall approach for the proof of Theorem 1 in convex-functions.pdf.
Suppose that (\mathbf{x}, u) and (\mathbf{y}, v) are points of $K \times \mathbb{R}$ such that $u>f(\mathbf{x})$ and $v>f(\mathbf{y})$; we need to prove that

$$
t u+(1-t) v>f(t \mathbf{x}+(1-t) \mathbf{y})
$$

for all $t \in(0,1)$. The hypotheses imply that the left hand side satisfies

$$
t u+(1-t) v>t f(\mathbf{x})+(1-t) f(\mathbf{y})
$$

and the convexity of f shows that the right hand side is greater than or equal to $f(t \mathbf{x}+(1-t) \mathbf{y})$. Combining these, we obtain the inequality in first sentence of the paragraph.■

K1. For each example it suffices to prove that the second derivative is nonnegative.
(i) The second derivative is $f^{\prime \prime}(x)=\cosh x$, which is positive for all x.■
(ii) The second derivative is $f^{\prime \prime}(x)=\sinh x$, which is nonnegative for all $x \geq 0$.■
(iii) The second derivative is $f^{\prime \prime}(x)=2 \sec ^{2} x \tan x$, which is nonnegative if $0 \leq x<\frac{1}{2} \pi$.
(iv) The second derivative is $f^{\prime \prime}(x)=-\sin x$, which is nonnegative if $\pi \leq x \leq 2 \pi$.■
(v) The second derivative is $f^{\prime \prime}(x)=1 / x^{2}$, which is positive for all $x>0 . \pi \leq x \leq 2 \pi$.■

K2. The key to proving the first statement is the following result:
Lemma. Let T be a linear transformation from \mathbb{R}^{n} to itself, and let $E \subset \mathbb{R}^{n}$ be convex. Then the image $T[E]$ is also convex.
Proof. Suppose that $\mathbf{u}=T(\mathbf{x})$ and $\mathbf{v}=T(\mathbf{y})$, where $\mathbf{x}, \mathbf{y} \in E$, and let $t \in[0,1]$. Then by the linearity of T we have

$$
t \mathbf{u}+(1-t) \mathbf{v}=T(t \mathbf{x}+(1-t) \mathbf{y})
$$

and since E is convex the expression inside the parentheses lies in E. Therefore the right hand side lies in $T[E]$ and hence the latter is convex.

We can now prove (i) as follows. Let $T(z, w)=(z,-w)$. We know that $-f$ is convex if and only if the set $E=\{(z, w) \mid w \geq-f(z)\}$ is convex.

Suppose that f is concave, so that $-f$ is convex and E is convex. Then by the lemma we know that $T[E]$ is also convex. But $T[E]=\{(z, s) \mid s \leq f(z)\}$, so this set is convex if E is convex. Conversely, if $E^{\prime}=T[E]$ is convex, we can check directly that $E=T\left[E^{\prime}\right]$, and hence E is convex if $T[E]$ is convex, in which case $-f$ is convex and f is concave.

Turning to (ii), lef $f_{1}=-f$, let g be the linear function such that $g(a)=f_{1}(a)$ and $g(b)=f_{1}(b)$ as in the proofs of Theorem 2 and Lemma 3. Then $-f_{1}$ is convex, and hence f is concave, if $f_{1}^{\prime \prime} \geq 0$; since $f_{1}^{\prime \prime}=-f^{\prime \prime}$, it follows that if $f^{\prime \prime} \leq 0$ then f is concave.

K3. Let $E(f)=\{(z, w) \mid w \geq f(z)\}$ and $E^{\prime}(g)=\{(z, w) \mid w \leq g(z)\}$; then $E(f)$ is convex because f is convex, and $E^{\prime}(g)$ is convex because g is concave. Therefore the intersection $E(f) \cap E^{\prime}(G)$ - which is the set described in the problem - is convex because it is the intersection of two convex sets.■

K4. Note that the vertices of the ellipse are $(\pm a, 0)$ and $(0, \pm 1)$. The hint is true because $|y| \leq b$ (where $b \geq 0$) if and only if $-b \leq y \leq b$. It will suffice to verify that f is concave on the closed interval $[-a, a]$, for if this is true then $-f$ will be convex and we can apply the conclusion of the preceding exercise.

It is convenient to rewrite $f(x)=a^{-1} \sqrt{a^{2}-x^{2}}$, for then we can check directly that $f^{\prime}(x)=$ $-a^{-1} x\left(a^{2}-x^{2}\right)^{-1 / 2}$ and

$$
f^{\prime \prime}(x)=-a^{-1}\left(\left(a^{2}-x^{2}\right)^{-1 / 2}+x^{2}\left(a^{2}-x^{2}\right)^{-3 / 2}\right)=-a\left(a^{2}-x^{2}\right)^{-3 / 2} .
$$

This expression is nonpositive if $|x| \leq a$, and therefore f is concave for these values of x.

K5. To prove (i), follow the hint, and let g be the linear function such that $g(a)=f(a)$ and $g(b)=f(b)$. In this case the difference function $h=g-f$ satisfies $h^{\prime \prime}>0$ everywhere on the open interval (a, b), and we need to prove that $h(x)>0$ for all x in that open interval. Once again there is some point $C \in(a, b)$ such that $h^{\prime}(C)=0$. Since $h^{\prime \prime}>0$ this means that $h^{\prime}(x)>0$ for $x<C$ and $h^{\prime}(x)<0$ for $x>C$. The first inequality implies that $h(x)>0$ if $x \in[a, C]$, so if $h\left(x_{0}\right) \leq 0$ for some $x_{0} \in(a, b)$ then we must have $x_{0} \in(C, b)$. Since $h^{\prime}<0$ on (C, b) we know that h is strictly decreasing on $[C, b]$ and hence $h\left(x_{0}\right)=0$ implies $h(b)<0$, which is a contradiction. Hence there is no point $x \in(a, b)$ such that $h(x)=0$, which is what we wanted to prove.

We can now prove (ii) using the methods employed to prove Lemma 4 and Theorem 5 in convex-functions.pdf. Let \mathbf{x} and \mathbf{y} be distinct points of K, and write $\mathbf{v}=\mathbf{y}-\mathbf{x}$ (hence \mathbf{v} is nonzero). If $\varphi(t)=f(x+t \mathbf{v})$ for t in some open interval containing [0,1$]$, then the reasoning in the cited document implies that $\varphi^{\prime \prime}>0$ everywhere, so that φ is strictly convex, and we then have

$$
f(t \mathbf{y}+(1-t) \mathbf{x})=\varphi(t)=\varphi(t \cdot 1+(1-t) \cdot 0)<t \varphi(1)+(1-t) \varphi(0) .
$$

By construction $\varphi(0)=f(\mathbf{x})$ and $\varphi(1)=f(\mathbf{y})$, so the strict convexity of f follows from substitution of these values into the right hand side of the display above.

SOLUTIONS TO ADDITIONAL EXERCISES FOR II. 1 AND II. 2

Here are the solutions to the additional exercises in triangle-exercises.pdf. Illustrations to accompany these solutions are given in the online file

```
trianglefigures.pdf
```

in the course directory.

C 1. Suppose first that X is one of the vertices A, B, C. In these cases the conclusion follows because $A \in A B \cap A C$ and each of these lines contains an infinite number of points on the triangle (namely, all points of $[A B]$ and $[A C]$ respectively), $B \in A B \cap B C$ and each of these lines contains an infinite number of points on the triangle (namely, all points of $[A B]$ and $[B C]$ respectively), and finally $C \in B C \cap A C$ and each of these lines contains an infinite number of points on the triangle (namely, all points of $[B C]$ and $[A C]$ respectively).

Suppose now that X is not a vertex. Without loss of generality we may assume that $X \in(A B)$, for the remaining cases where $X \in(B C)$ or $X \in(A C)$ follow by interchanging the roles of A, B, C in the argument we shall give.

If $X \in(A B)$ and $L=A B$, then clearly $X \in L$ and L contains infinitely many points of the triangle because it contains $[A B]$. From now on, suppose that $X \neq A B$.

If $L=X C$, then X and C lie on both L and the triangle; we claim that no other point of L satisfies these conditions. Suppose to the contrary that there is such a third point Y; there are three cases depending upon whether Y lies on $A B, B C$ or $A C$. If $Y \in A B$, then both L and $A B$ contain the distinct points X and Y, so that $L=X Y$; but we are assuming that X, Y, C are collinear, and this contradicts our even more basic assumption that A, B, C are noncollinear (this is implicit in asserting the existence of $\triangle A B C)$. Therefore the line $X C$ only meets the triangle in two points.

Now suppose that $C \notin L$ and $L \neq A B$; we need to show that L and $\triangle A B C$ have at most one other point in common besides X. By Pasch's Theorem there is a second point Y on L which lies on either $(B C)$ or $(A C)$; in either case there we claim that there is no third point in $L \cap \triangle A B C$. Since $X \in A B$ is not one of the vertices and the lines $B C$ and $A C$ meet $A B$ in B and A respectively, it follows that X lies on neither of these lines. Therefore the line $L=X Y$ meets $\triangle A B C$ in two sides and cannot contain any of the vertices. If there were a third point, it would lie on one of $(A B),(B C)$ or $(A C)$. By Exercises II. 2.8 we know that L cannot contain points of all three sides,, and if the third point were in $(A B)$ it would follow that $L=A B$. On the other hand, the line L cannot contain X and two points from either $(A C)$ or $(B C)$, for in that case L would be equal to $A C$ or $B C$ and also contain $X \in(A B)$, so that L would also be equal to $A B$. Thus the existence of a third point leads to a contradiction if $L \neq A B, X C$, and hence no such point can exist, so that all lines through X except $A B$ meet the triangle in two points.■

C 2. The most difficult parts of this proof were done in the preceding exercise. Let \mathbf{T} be equal to $\triangle A B C=\triangle D E F$. By the preceding exercise, since $\mathbf{T}=\triangle A B C$ we
know that $\{A, B, C\}$ is the set \mathbf{V} of all points X in \mathbf{T} such that two lines through X contain at least three points of \mathbf{T}, and likewise $\{D, E, F\}$ is the set \mathbf{V} of all points X in \mathbf{T} such that two lines through X contain at least three points of \mathbf{T}. Therefore we have $\{A, B, C\}=\mathbf{V}=\{D, E, F\}$.

C 3. Let H_{1} and H_{2} denote the two half-planes associated to L. Then each of the points A, B, C lies on exactly one of the subsets L, H_{1}, H_{2}.

Before we split the argument into cases using the previous sentence, we make a general observation. Since $X \in L$ lies in the interior of $\triangle A B C$, by the Crossbar Theorem we know that $(B X$ and $(A C)$ have a point Y in common. This point cannot be X because a point cannot lie in both the interior of $\triangle A B C$ and one of the three sides $A B, B C, A C$ (look at the definition of interior). Since $Y \in(B C$, it follows that either $B * X * Y$ or $B * Y * X$ is true; however, if the latter were true, then B and X would lie on opposite sides of the line $A Y=A C$, contradicting the assumption on X. Therefore we must have $B * X * Y$.

We claim that all three vertices cannot lie in either H_{1} or H_{2}. If they did, then by convexity the point Y in the preceding paragraph would also lie in the given half-plane, and similarly the point X would lie in this half-plane. Since $X \in L$ by assumption, this is impossible, and thus the three vertices cannot all lie on one side of L.

Next, we claim that at most one vertex lies on L. If, say, $A \in L$, then $L=A X$, and if either B or C were also on L we would have that $L=A B$ or $A C$, which in turn would imply that $X \in A B$ or $A C$, contradicting the condition that X lies in the interior of the triangle. The cases where $B \in L$ and $C \in L$ can be established by interchanging the roles of the three vertices in the preceding argument.

Suppose now that one vertex lies on L; we claim that the other two vertices must lie on opposite sides of L. Once again, it is enough to consider the case where $A \in L$, for the other cases will follow by interchanging the roles of the vertices. But if $A \in L$, then the Crossbar Theorem implies that L and $(B C)$ have a point W in common (in fact, the open segment $(B C)$ and open ray ($A X$ have a point in common), and therefore it follows that B and C lie on opposite sides of L. Furthermore, it follows that the line L meets the triangle in the distinct points A and W.

The only possibility left to consider is the case where no vertex lies on L; by the preceding discussion, we know that neither half-plane contains all three vertices, and thus two of the vertices are on one half-plane and one is on the other. As before, without loss of generality we may assume that A is on one side and B, C are on the other. But in this situation we know that the line L meets both $(B C)$ and $(A C)$. This completes the examination of all possible cases.

C 4. We shall follow the hint and solve for \mathbf{x} in terms of \mathbf{y}. Since $\mathbf{y}=A \mathbf{x}+\mathbf{b}$ and A is invertible, it follows that $\mathbf{x}=A^{-1}(\mathbf{y}-\mathbf{b})$. If we substitute this into the defining equation for the plane, we see that

$$
d=C \mathbf{x}=C A^{-1}(\mathbf{y}-\mathbf{b}) \text { or equivalently } C A^{-1} \mathbf{y}=d+C A^{-1} \mathbf{b}
$$

which shows that \mathbf{y} is defined by an equation of the form $P \mathbf{y}=q$, where $P=C A^{-1}$ and $q=d+C A^{-1} \mathbf{b}$.

C 5. First of all, we claim that C and D lie on opposite sides of the line $A B$. Since no three of A, B, C, D are collinear, it follows that neither C nor D lies on $A B$, so it is only necessary to prove that C and D cannot lie on the same side of $A B$. However, if they did, then the noncollinearity condition would imply that ($A C$ and ($A D$ are distinct open rays, and by the Trichotomy Principle it would follow that either D would lie in the interior of $\angle B A C$ or else C would lie in the interior of $\angle B A D$.

By the preceding paragraph and Plane Separation, we know that the open segment $(C D)$ meets the line $A B$ in some point E, and since $C * E * D$ is true it follows that E lies in the interior of $\angle C A D$. Now B, E, A are collinear; since B does not lie in the interior of $\angle C A D$ and ($B E$ does lie in the interior of this angle, it follows that we must have $E * A * B$.

By the Supplement Postulate for angle measurements we have

$$
|\angle B A C|+|\angle C A E|=180^{\circ}=|\angle D A B|+|\angle D A E|
$$

and since E lies in the interior of $\angle C A D$ the Addition Postulate implies that

$$
|\angle C A D|=|\angle C A E|+|\angle D A E| .
$$

If we add the equations which follow from the Supplement Postulate we have

$$
|\angle B A C|+|\angle C A E|+|\angle D A B|+|\angle D A E|=360^{\circ}
$$

and if we now use the remaining equation we may rewrite the left hand side of the latter as $|\angle B A C|+|\angle C A D|+|\angle D A B|=360^{\circ}$, which is what we wanted to prove.■

