
SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2

Here are the solutions to the additional exercises in betsepexercises.pdf.

B1. Let y and z be distinct points of L; we claim that x, y and z are not collinear.
If there were some line M containing them, then we would have M = L since both lines
contain the last two points; however, we know that x 6∈ L, so this is impossible.

To show the existence of a plane containing L and x, let P be the unique plane
containing x, y and z. Since y and z are in P , the axioms imply that the line joining
them, which is L, must be contained in P . To see that there is only one plane containing
L and x, notice that a plane Q which contains both of these will automatically contain
y and z. Since there is only one plane containing x, y and z, it follows that Q must be
identical to P .

B2. By the previous exercises, there is a unique plane P containing X and K. Let
A, B, C be the points where K meets the lines L, M, N respectively. Then we have the
following:

(1) Since X and A lie on P , the line XA = L is contained in P .

(2) Since X and B lie on P , the line XB = M is contained in P .

(3) Since X and C lie on P , the line XC = N is contained in P .

Therefore P contains each of the lines K, L, M, N .

B3. Since A ∗ B ∗ C and X ∗ Y ∗ Z are assumed, the conditions on the distances
imply that

d(A, B) = d(A, C) − d(B, C) = d(X, Z) − d(Y, Z) = d(X, Y )

which is what we wanted to prove.

B4. If X ∈ (AB), then A ∗ X ∗ B is true. By assumption, we have A ∗ B ∗ C and
therefore Proposition II.4 implies that A ∗ X ∗ C is true, so that X ∈ (AC). [Note: We
are actually using an alternate form of this result; namely, W ∗U ∗T and W ∗V ∗U imply
W ∗ V ∗ T . However, this follows from the stated form — T ∗U ∗W and U ∗ V ∗W imply
T ∗ V ∗ W because P ∗ Q ∗ R and R ∗ Q ∗ P are equivalent conditions.]

B5. Both of the rays [AB and [BA are contained in the line AB, so we have
[AB ∪ [BA ⊂ AB. Conversely, suppose that X ∈ AB, and write X = A + t(B − A) for
some scalar t. If t 6= 0 then X ∈ [AB, while if t < 0 then we have X ∗ B ∗ A, and in fact
we also have

X = B + (1 − t)(B − A) .

Since t < 0, it follows that 1 − t > 1 and therefore X ∈ [BA.

B6. Since A ∗ B ∗ C holds, we know that C = A + v(B − A) where v > 1.
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If X ∈ [AB], then X = A + t(B − A) where 0 ≤ t ≤ 1 and hence X ∈ [AB. If
X ∈ [BC, then X = B + s(C − B) where s ≥ 0; using the equation in the preceding
paragraph, we may use this to rewrite X as a linear combination of A and B as follows:

X = B + s[A+v(B−A)−B] = (1+vs−s)B + (s−vs)A = A + (1+vs−s)(B−A)

Since s ≥ 0 and v > 1, it follows that 1 + s − vs > 1, and therefore we see that X ∈ [AB.
Hence [AB] ∪ [BC is contained in [AB.

Conversely, suppose that X ∈ [AB and write X = A + t(B − A) where t ≥ 0. If
t ≤ 1, then we know that X ∈ [AB]. Suppose now that t > 1. By the equation in the first
paragraph we have

A =
1

1 − v
C +

−v

1 − v
B

and therefore after substitution and some algebraic calculation we may rewrite X as a
linear combination of B and C as follows:

X = B +
1 − t

1 − v
(C − B)

Since t, v > 1 it follows that the numerator and denominator of (1 − t)/(1 − v) are both
negative, so that the quotient is positive, and therefore it follows that X must lie on [BC.
Hence we have [AB ⊂ [AB]∪ [BC, and if we combine this with the previous paragraph we
conclude that [AB = [AB] ∪ [BC.

B7. We shall follow the hint and eliminate all of the alternatives. In both cases the
points X and Y are on M but not equal to A, and since L and M can only have the point
A in common it follows that neither X nor Y lies on L. Therefore in each case either X
and Y lie on the same side of L or else they lie on opposite sides of L.

For part (a), we are given that A ∗X ∗Y , and we want to show that X and Y cannot
lie on opposite sides of L. However, if they did, then there would be some point C such
that C ∈ L and X ∗C ∗Y . Now C would have to be a point of M , and since A is the only
common point of L and M it would follow that A = C, so that X ∗ A ∗ Y . However, we
know that A ∗X ∗Y , and thus we cannot have X ∗A ∗Y . This is a contradiction, and the
source is our assumption that X and Y were on opposite sides of L; hence they must be
on the same side of L.

For part (b), we are given that X ∗A ∗ Y , and we want to show that X and Y cannot
lie on the same side of L. But if they did, then by convexity all points of (XY ) would also
lie on that half-plane, and we know that A ∈ (XY ) ∩ L does not. This is a contradiction,
and the source is our assumption that X and Y were on the same side of L; hence they
must be on opposite sides of L.

B8. We first observe that all points of (AC lie on a common side of AB, and likewise
for (BD. If X ∈ (AC, then either X = C, A ∗ C ∗ X or A ∗ X ∗ C holds. In each case X
lies on the same side of AB as C. The proof for (BD can be obtained by replacing A and
C with B and D respectively.
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By assumption, C lies on one side of AB, say H, and D lies on the other, say K. We
can now use the preceding paragraph to conclude that (AC ⊂ H and (BD ⊂ K. Since H
and K have no points in common, the same is true for (AC and (BD. Furthermore, since
AC meets AB in A and BD meets AB in B, it follows that A cannot lie on [BD and B
cannot lie on [AC. If we combine the conclusions of the preceding two sentences, we see
that [AC and [BD have no points in common.

B9. We know that [AB] is contained in ∆ABC ∩AB. We shall follow the hint and
show that if X ∈ ∆ABC but X 6∈ [AB], then X 6∈ AB.

If X = C, then the conclusion follows because C 6∈ AB by assumption. We are now
left with the cases where X ∈ (AC) or X ∈ (BC); since the argument in the second case
is the same as the argument in the first with A replaced by B, it is enough to show that
X 6∈ AB if X ∈ (AC). If we did have X ∈ (AC) and X ∈ AB, then it would follow that
the line L containing A and X would be equal to AB. But A, X, C all lie on a single lie by
assumption, and this line must be L = AB, which means that all three vertices of ∆ABC
would lie on L. This is a contradiction, and the source is our assumption that (AC) and
AB have a point in common. Therefore (AC) and [AB] do not have any points in common;
as noted before the same conclusion will follow for (BC) and [AB], and thus we see that
no points of [AC]−{A} or [BC]−{B} can lie on the line AB, so that ∆ABC ∩AB must
be equal to [AB].

B10. In each of these problems, we need to rewrite the line equation in the form
g(x, y) = 0, and then we need to compare the signs of g(X) and g(Y ).

(a) In this case we may take g(x, y) = 9x − 4y − 7. We have g(3, 6) = −3 < 0 and
g(1, 7) = −26 < 0, so the two points lie on the same side of L.

(b) In this case we may take g(x, y) = 3x − y − 7. We have g(8, 5) = 12 > 0 and
g(−2, 4) = −29 < 0, so the two points lie on opposite sides of L.

(c) In this case we may take g(x, y) = 2x + 3y + 5. We have g(7,−6) = 1 > 0 and
g(4,−8) = −11 < 0, so the two points lie on opposite sides of L.

(d) In this case we may take g(x, y) = 7x + 3y − 2. We have g(0, 1) = 1 > 0 and
g(−2, 6) = 2 > 0, so the two points lie on the same side of L.
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SOLUTIONS TO ADDITIONAL EXERCISES INVOLVING CONVEX FUNCTIONS

Here are the solutions to the additional exercises in cvxfcnexercises.pdf.

K0. We shall approach for the proof of Theorem 1 in convex-functions.pdf.

Suppose that (x, u) and (y, v) are points of K ×R such that u > f(x) and v > f(y); we need
to prove that

t u + (1 − t) v > f (tx + (1 − t)y )

for all t ∈ (0, 1). The hypotheses imply that the left hand side satisfies

t u + (1 − t) v > t f(x) + (1 − t) f(y)

and the convexity of f shows that the right hand side is greater than or equal to f (tx + (1 − t)y ).
Combining these, we obtain the inequality in first sentence of the paragraph.

K1. For each example it suffices to prove that the second derivative is nonnegative.

(i) The second derivative is f ′′(x) = coshx, which is positive for all x.

(ii) The second derivative is f ′′(x) = sinhx, which is nonnegative for all x ≥ 0.

(iii) The second derivative is f ′′(x) = 2 sec2 x tan x, which is nonnegative if 0 ≤ x < 1

2
π.

(iv) The second derivative is f ′′(x) = − sinx, which is nonnegative if π ≤ x ≤ 2π.

(v) The second derivative is f ′′(x) = 1/x2, which is positive for all x > 0. π ≤ x ≤ 2π.

K2. The key to proving the first statement is the following result:

Lemma. Let T be a linear transformation from R
n to itself, and let E ⊂ R

n be convex. Then

the image T [E] is also convex.

Proof. Suppose that u = T (x) and v = T (y), where x,y ∈ E, and let t ∈ [0, 1]. Then by the
linearity of T we have

tu + (1 − t)v = T (tx + (1 − t)y)

and since E is convex the expression inside the parentheses lies in E. Therefore the right hand side
lies in T [E] and hence the latter is convex.

We can now prove (i) as follows. Let T (z, w) = (z,−w). We know that −f is convex if and
only if the set E = {(z, w) | w ≥ −f(z)} is convex.

Suppose that f is concave, so that −f is convex and E is convex. Then by the lemma we
know that T [E] is also convex. But T [E] = {(z, s) | s ≤ f(z)}, so this set is convex if E is convex.
Conversely, if E′ = T [E] is convex, we can check directly that E = T [E ′], and hence E is convex if
T [E] is convex, in which case −f is convex and f is concave.

Turning to (ii), lef f1 = −f , let g be the linear function such that g(a) = f1(a) and g(b) = f1(b)
as in the proofs of Theorem 2 and Lemma 3. Then −f1 is convex, and hence f is concave, if f ′′

1
≥ 0;

since f ′′

1
= −f ′′, it follows that if f ′′ ≤ 0 then f is concave.
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K3. Let E(f) = {(z, w) | w ≥ f(z)} and E ′(g) = {(z, w) | w ≤ g(z)}; then E(f) is
convex because f is convex, and E ′(g) is convex because g is concave. Therefore the intersection
E(f)∩E′(G) — which is the set described in the problem — is convex because it is the intersection
of two convex sets.

K4. Note that the vertices of the ellipse are (± a, 0) and (0,± 1). The hint is true because
|y| ≤ b (where b ≥ 0) if and only if −b ≤ y ≤ b. It will suffice to verify that f is concave on the
closed interval [−a, a], for if this is true then −f will be convex and we can apply the conclusion of
the preceding exercise.

It is convenient to rewrite f(x) = a−1
√

a2 − x2, for then we can check directly that f ′(x) =
−a−1 x (a2 − x2)−1/2 and

f ′′(x) = −a−1

(

(a2 − x2)−1/2 + x2 (a2 − x2)−3/2

)

= −a (a2 − x2)−3/2 .

This expression is nonpositive if |x| ≤ a, and therefore f is concave for these values of x.

K5. To prove (i), follow the hint, and let g be the linear function such that g(a) = f(a) and
g(b) = f(b). In this case the difference function h = g − f satisfies h′′ > 0 everywhere on the open
interval (a, b), and we need to prove that h(x) > 0 for all x in that open interval. Once again there
is some point C ∈ (a, b) such that h′(C) = 0. Since h′′ > 0 this means that h′(x) > 0 for x < C
and h′(x) < 0 for x > C. The first inequality implies that h(x) > 0 if x ∈ [a,C], so if h(x0) ≤ 0 for
some x0 ∈ (a, b) then we must have x0 ∈ (C, b). Since h′ < 0 on (C, b) we know that h is strictly
decreasing on [C, b] and hence h(x0) = 0 implies h(b) < 0, which is a contradiction. Hence there is
no point x ∈ (a, b) such that h(x) = 0, which is what we wanted to prove.

We can now prove (ii) using the methods employed to prove Lemma 4 and Theorem 5 in
convex-functions.pdf. Let x and y be distinct points of K, and write v = y − x (hence v is
nonzero). If ϕ(t) = f(x + tv) for t in some open interval containing [0, 1], then the reasoning in
the cited document implies that ϕ′′ > 0 everywhere, so that ϕ is strictly convex, and we then have

f (ty + (1 − t)x ) = ϕ(t) = ϕ (t · 1 + (1 − t) · 0) < tϕ(1) + (1 − t)ϕ(0) .

By construction ϕ(0) = f(x) and ϕ(1) = f(y), so the strict convexity of f follows from substitution
of these values into the right hand side of the display above.
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SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2

Here are the solutions to the additional exercises in triangle-exercises.pdf. Illus-
trations to accompany these solutions are given in the online file

trianglefigures.pdf

in the course directory.

C 1. Suppose first that X is one of the vertices A, B, C. In these cases the conclusion
follows because A ∈ AB∩AC and each of these lines contains an infinite number of points
on the triangle (namely, all points of [AB] and [AC] respectively), B ∈ AB∩BC and each
of these lines contains an infinite number of points on the triangle (namely, all points of
[AB] and [BC] respectively), and finally C ∈ BC ∩AC and each of these lines contains an
infinite number of points on the triangle (namely, all points of [BC] and [AC] respectively).

Suppose now that X is not a vertex. Without loss of generality we may assume that
X ∈ (AB), for the remaining cases where X ∈ (BC) or X ∈ (AC) follow by interchanging
the roles of A, B, C in the argument we shall give.

If X ∈ (AB) and L = AB, then clearly X ∈ L and L contains infinitely many points
of the triangle because it contains [AB]. From now on, suppose that X 6= AB.

If L = XC, then X and C lie on both L and the triangle; we claim that no other
point of L satisfies these conditions. Suppose to the contrary that there is such a third
point Y ; there are three cases depending upon whether Y lies on AB, BC or AC. If
Y ∈ AB, then both L and AB contain the distinct points X and Y , so that L = XY ;
but we are assuming that X, Y, C are collinear, and this contradicts our even more basic
assumption that A, B, C are noncollinear (this is implicit in asserting the existence of
∆ABC). Therefore the line XC only meets the triangle in two points.

Now suppose that C 6∈ L and L 6= AB; we need to show that L and ∆ABC have
at most one other point in common besides X. By Pasch’s Theorem there is a second
point Y on L which lies on either (BC) or (AC); in either case there we claim that there
is no third point in L ∩ ∆ABC. Since X ∈ AB is not one of the vertices and the lines
BC and AC meet AB in B and A respectively, it follows that X lies on neither of these
lines. Therefore the line L = XY meets ∆ABC in two sides and cannot contain any of
the vertices. If there were a third point, it would lie on one of (AB), (BC) or (AC). By
Exercises II.2.8 we know that L cannot contain points of all three sides,, and if the third
point were in (AB) it would follow that L = AB. On the other hand, the line L cannot
contain X and two points from either (AC) or (BC), for in that case L would be equal
to AC or BC and also contain X ∈ (AB), so that L would also be equal to AB. Thus
the existence of a third point leads to a contradiction if L 6= AB, XC, and hence no such
point can exist, so that all lines through X except AB meet the triangle in two points.

C 2. The most difficult parts of this proof were done in the preceding exercise.
Let T be equal to ∆ABC = ∆DEF . By the preceding exercise, since T = ∆ABC we

1



know that {A, B, C} is the set V of all points X in T such that two lines through X

contain at least three points of T, and likewise {D, E, F} is the set V of all points X in
T such that two lines through X contain at least three points of T. Therefore we have
{A, B, C} = V = {D, E, F}.

C 3. Let H1 and H2 denote the two half-planes associated to L. Then each of the
points A, B, C lies on exactly one of the subsets L, H1, H2.

Before we split the argument into cases using the previous sentence, we make a general
observation. Since X ∈ L lies in the interior of ∆ABC, by the Crossbar Theorem we know
that (BX and (AC) have a point Y in common. This point cannot be X because a point
cannot lie in both the interior of ∆ABC and one of the three sides AB, BC, AC (look at
the definition of interior). Since Y ∈ (BC, it follows that either B ∗ X ∗ Y or B ∗ Y ∗ X

is true; however, if the latter were true, then B and X would lie on opposite sides of the
line AY = AC, contradicting the assumption on X. Therefore we must have B ∗ X ∗ Y .

We claim that all three vertices cannot lie in either H1 or H2. If they did, then by
convexity the point Y in the preceding paragraph would also lie in the given half-plane,
and similarly the point X would lie in this half-plane. Since X ∈ L by assumption, this is
impossible, and thus the three vertices cannot all lie on one side of L.

Next, we claim that at most one vertex lies on L. If, say, A ∈ L, then L = AX, and
if either B or C were also on L we would have that L = AB or AC, which in turn would
imply that X ∈ AB or AC, contradicting the condition that X lies in the interior of the
triangle. The cases where B ∈ L and C ∈ L can be established by interchanging the roles
of the three vertices in the preceding argument.

Suppose now that one vertex lies on L; we claim that the other two vertices must lie
on opposite sides of L. Once again, it is enough to consider the case where A ∈ L, for
the other cases will follow by interchanging the roles of the vertices. But if A ∈ L, then
the Crossbar Theorem implies that L and (BC) have a point W in common (in fact, the
open segment (BC) and open ray (AX have a point in common), and therefore it follows
that B and C lie on opposite sides of L. Furthermore, it follows that the line L meets the
triangle in the distinct points A and W .

The only possibility left to consider is the case where no vertex lies on L; by the
preceding discussion, we know that neither half-plane contains all three vertices, and thus
two of the vertices are on one half-plane and one is on the other. As before, without loss
of generality we may assume that A is on one side and B, C are on the other. But in
this situation we know that the line L meets both (BC) and (AC). This completes the
examination of all possible cases.

C 4. We shall follow the hint and solve for x in terms of y. Since y = Ax + b and
A is invertible, it follows that x = A−1(y − b). If we substitute this into the defining
equation for the plane, we see that

d = Cx = CA−1(y − b) or equivalently CA−1y = d + CA−1b

which shows that y is defined by an equation of the form Py = q, where P = CA−1 and
q = d + CA−1b.
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C 5. First of all, we claim that C and D lie on opposite sides of the line AB. Since
no three of A, B, C, D are collinear, it follows that neither C nor D lies on AB, so it is only
necessary to prove that C and D cannot lie on the same side of AB. However, if they did,
then the noncollinearity condition would imply that (AC and (AD are distinct open rays,
and by the Trichotomy Principle it would follow that either D would lie in the interior of
6 BAC or else C would lie in the interior of 6 BAD.

By the preceding paragraph and Plane Separation, we know that the open segment
(CD) meets the line AB in some point E, and since C ∗E ∗D is true it follows that E lies
in the interior of 6 CAD. Now B, E, A are collinear; since B does not lie in the interior of
6 CAD and (BE does lie in the interior of this angle, it follows that we must have E∗A∗B.

By the Supplement Postulate for angle measurements we have

| 6 BAC| + | 6 CAE| = 180◦ = | 6 DAB| + | 6 DAE|

and since E lies in the interior of 6 CAD the Addition Postulate implies that

| 6 CAD| = | 6 CAE| + | 6 DAE| .

If we add the equations which follow from the Supplement Postulate we have

| 6 BAC| + | 6 CAE| + | 6 DAB| + | 6 DAE| = 360◦

and if we now use the remaining equation we may rewrite the left hand side of the latter
as | 6 BAC| + | 6 CAD| + | 6 DAB| = 360◦, which is what we wanted to prove.
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