
SOLUTIONS TO ADDITIONAL EXERCISES FOR II.3 AND II.4

Here are the solutions to the additional exercises in triangle-exercises.pdf. There
is an illustration to accompany one solution on the last page.

C 1. Suppose first that X is one of the vertices A, B, C. In these cases the conclusion
follows because A ∈ AB∩AC and each of these lines contains an infinite number of points
on the triangle (namely, all points of [AB] and [AC] respectively), B ∈ AB∩BC and each
of these lines contains an infinite number of points on the triangle (namely, all points of
[AB] and [BC] respectively), and finally C ∈ BC ∩AC and each of these lines contains an
infinite number of points on the triangle (namely, all points of [BC] and [AC] respectively).

Suppose now that X is not a vertex. Without loss of generality we may assume that
X ∈ (AB), for the remaining cases where X ∈ (BC) or X ∈ (AC) follow by interchanging
the roles of A, B, C in the argument we shall give.

If X ∈ (AB) and L = AB, then clearly X ∈ L and L contains infinitely many points
of the triangle because it contains [AB]. From now on, suppose that X 6= AB.

If L = XC, then X and C lie on both L and the triangle; we claim that no other
point of L satisfies these conditions. Suppose to the contrary that there is such a third
point Y ; there are three cases depending upon whether Y lies on AB, BC or AC. If
Y ∈ AB, then both L and AB contain the distinct points X and Y , so that L = XY ;
but we are assuming that X, Y, C are collinear, and this contradicts our even more basic
assumption that A, B, C are noncollinear (this is implicit in asserting the existence of
∆ABC). Therefore the line XC only meets the triangle in two points.

Now suppose that C 6∈ L and L 6= AB; we need to show that L and ∆ABC have
at most one other point in common besides X. By Pasch’s Theorem there is a second
point Y on L which lies on either (BC) or (AC); in either case there we claim that there
is no third point in L ∩ ∆ABC. Since X ∈ AB is not one of the vertices and the lines
BC and AC meet AB in B and A respectively, it follows that X lies on neither of these
lines. Therefore the line L = XY meets ∆ABC in two sides and cannot contain any of
the vertices. If there were a third point, it would lie on one of (AB), (BC) or (AC). By
Exercises II.2.8 we know that L cannot contain points of all three sides,, and if the third
point were in (AB) it would follow that L = AB. On the other hand, the line L cannot
contain X and two points from either (AC) or (BC), for in that case L would be equal
to AC or BC and also contain X ∈ (AB), so that L would also be equal to AB. Thus
the existence of a third point leads to a contradiction if L 6= AB, XC, and hence no such
point can exist, so that all lines through X except AB meet the triangle in two points.

C 2. The most difficult parts of this proof were done in the preceding exercise.
Let T be equal to ∆ABC = ∆DEF . By the preceding exercise, since T = ∆ABC we
know that {A, B, C} is the set V of all points X in T such that two lines through X

contain at least three points of T, and likewise {D, E, F} is the set V of all points X in
T such that two lines through X contain at least three points of T. Therefore we have
{A, B, C} = V = {D, E, F}.
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C 3. Let H1 and H2 denote the two half-planes associated to L. Then each of the
points A, B, C lies on exactly one of the subsets L, H1, H2.

Before we split the argument into cases using the previous sentence, we make a general
observation. Since X ∈ L lies in the interior of ∆ABC, by the Crossbar Theorem we know
that (BX and (AC) have a point Y in common. This point cannot be X because a point
cannot lie in both the interior of ∆ABC and one of the three sides AB, BC, AC (look at
the definition of interior). Since Y ∈ (BC, it follows that either B ∗ X ∗ Y or B ∗ Y ∗ X

is true; however, if the latter were true, then B and X would lie on opposite sides of the
line AY = AC, contradicting the assumption on X. Therefore we must have B ∗ X ∗ Y .

We claim that all three vertices cannot lie in either H1 or H2. If they did, then by
convexity the point Y in the preceding paragraph would also lie in the given half-plane,
and similarly the point X would lie in this half-plane. Since X ∈ L by assumption, this is
impossible, and thus the three vertices cannot all lie on one side of L.

Next, we claim that at most one vertex lies on L. If, say, A ∈ L, then L = AX, and
if either B or C were also on L we would have that L = AB or AC, which in turn would
imply that X ∈ AB or AC, contradicting the condition that X lies in the interior of the
triangle. The cases where B ∈ L and C ∈ L can be established by interchanging the roles
of the three vertices in the preceding argument.

Suppose now that one vertex lies on L; we claim that the other two vertices must lie
on opposite sides of L. Once again, it is enough to consider the case where A ∈ L, for
the other cases will follow by interchanging the roles of the vertices. But if A ∈ L, then
the Crossbar Theorem implies that L and (BC) have a point W in common (in fact, the
open segment (BC) and open ray (AX have a point in common), and therefore it follows
that B and C lie on opposite sides of L. Furthermore, it follows that the line L meets the
triangle in the distinct points A and W .

The only possibility left to consider is the case where no vertex lies on L; by the
preceding discussion, we know that neither half-plane contains all three vertices, and thus
two of the vertices are on one half-plane and one is on the other. As before, without loss
of generality we may assume that A is on one side and B, C are on the other. But in
this situation we know that the line L meets both (BC) and (AC). This completes the
examination of all possible cases.

C 4. We shall follow the hint and solve for x in terms of y. Since y = Ax + b and
A is invertible, it follows that x = A−1(y − b). If we substitute this into the defining
equation for the plane, we see that

d = Cx = CA−1(y − b) or equivalently CA−1y = d + CA−1b

which shows that y is defined by an equation of the form Py = q, where P = CA−1 and
q = d + CA−1b.

C 5. First of all, we claim that C and D lie on opposite sides of the line AB. Since
no three of A, B, C, D are collinear, it follows that neither C nor D lies on AB, so it is only
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necessary to prove that C and D cannot lie on the same side of AB. However, if they did,
then the noncollinearity condition would imply that (AC and (AD are distinct open rays,
and by the Trichotomy Principle it would follow that either D would lie in the interior of
6 BAC or else C would lie in the interior of 6 BAD.

By the preceding paragraph and Plane Separation, we know that the open segment
(CD) meets the line AB in some point E, and since C ∗E ∗D is true it follows that E lies
in the interior of 6 CAD. Now B, E, A are collinear; since B does not lie in the interior of
6 CAD and (BE does lie in the interior of this angle, it follows that we must have E∗A∗B.

By the Supplement Postulate for angle measurements we have

| 6 BAC| + | 6 CAE| = 180◦ = | 6 DAB| + | 6 DAE|

and since E lies in the interior of 6 CAD the Addition Postulate implies that

| 6 CAD| = | 6 CAE| + | 6 DAE| .

If we add the equations which follow from the Supplement Postulate we have

| 6 BAC| + | 6 CAE| + | 6 DAB| + | 6 DAE| = 360◦

and if we now use the remaining equation we may rewrite the left hand side of the latter
as | 6 BAC| + | 6 CAD| + | 6 DAB| = 360◦, which is what we wanted to prove.
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The line L is assumed to contain the interior point X of the triangle.  The objective is to 
show that there are two possibilities for L; either it meets the triangle in two sides 
between the vertices (shown in green), or else it goes through one vertex and its 

opposite side (shown in red).  The auxiliary point Y and line BX in the proof are also 

depicted. 
 


