
SOLUTIONS TO EXERCISES FOR

MATHEMATICS 133 — Part 4

Winter 2009

NOTE ON ILLUSTRATIONS. Drawings for several of the solutions in this file are available
in the following file:

http://math.ucr.edu/∼res/math133/math133solutions04.figures.f13.pdf

III . Basic Euclidean concepts and theorems

III.1 : Perpendicular lines and planes

1. Assuming that the three planes P , Q and T have one point in common but do not have
a line in common, define lines L,M,N such that L = P ∩Q, M = P ∩T and N = Q∩T . Then we
have L ∩ M ∩ N = P ∩ Q ∩ T , and we know it contains at least one point. However, if the planes
do not have a line in common, then it follows that L 6= M , for otherwise they would. Now the lines
L and M have at most one point in common, so the same is true for the subset L ∩ M ∩N . Since
this subset contains at least one point and cannot contain more than one point, it must consist of
exactly one point.

2. As usual, follow the hint. The formula from Section I.2 states that

(

v ×w
)

·
(

y × z
)

= (v · y)(w · z) − (v · z)(w · y) .

In our situation w = z = u, while v = a and y = b; we know that u is a unit vector which is
perpendicular to a and b. If we make these substitutions we find that

(

a× u
)

·
(

b × u
)

= a · b

and also that |a| = |a× u| as well as |b| = |b× u|. Combining these, we see that the cosine of the
angle 6 (x + a)x(x + b) is equal to the cosine of the angle 6 (a × u)0(b × u).

3. Follow the hint, and write P = x+W , where W is a 2–dimensional vector subspace. Let
e and f form an orthonormal basis for W , let U and V be the 1–dimensional subspaces they span,
and take L and M to be the lines x+U and x+V . Since e and f are perpendicular, the lines L and
M will also be perpendicular. Suppose that we have a third line in the plane, say x + T , which is
perpendicular to both L and M , and let g be a nonzero vector in T ; note that T must be contained
in W . It will follow that { e, f , g } is a set of nonzero mutually perpendicular vectors and hence
is linearly independent. This is impossible; since W is 2–dimensional, every linearly independent
subset of it contains at most two vectors. Therefore a third perpendicular cannot exist.

4. We use similar ideas to those of the preceding exercise. Clearly we can form another line
x + T in this case, where T is spanned by e× f . If we are given any line x + S perpendicular to L
and M , then S is spanned by a vector h which is perpendicular to e and f; since all such vectors
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are scalar multiples of the cross product, it follows that x + S must be the previously described
line x + T .

5. Let y be the point where the two lines meet, let L be the line joining y and y + v, and
let M be the line joining y and y + w, where v and w are nonzero vectors. Since the lines are
assumed to be distinct, neither v nor w is a scalar multiple of the other. The points on L have the
form x(t) = y + tv for some t ∈ R. To find the perpendicular projection of this point on L, write
tv as a sum of two vectors, one of which is a multiple of w and the other or which is perpendicular
to w. By the perpendicular projection formula the summand perpendicular to w is given by

z(t) = tv −
〈tv,w〉

〈w,w〉

and the foot MX of the perpendicular to L is given by

y +
〈tv,w〉

〈w,w〉

so that the distance from x(t) to M is just the length of z(t). It follows from the formulas that this
distance is equal to |t| |z(t)|; since x(1) = v and v and w are linearly independent, it follows that
z(1) 6= 0. Hence the distance from x(t) to M is |t| times the positive real number |z(1)|. Therefore
the distance from x(t) to M is equal to a > 0 if and only if t = ± a/|z(1)|.

III.2 : Basic theorems on triangles

1. Suppose that ∆ABC ∼= ∆DEF . Then d(A,B) = d(D,E) and

d(B,G) = 1

2
d(B,C) = 1

2
d(E,F ) = d(E,H)

and since 6 CBA = 6 GBA and 6 FED = 6 HED we also have

| 6 GBA| = | 6 CBA| = | 6 FED| = | 6 HED| .

Therefore we have ∆GBA ∼= ∆HED by SAS.

Conversely, if ∆ABG ∼= ∆DEH. Then as before we have d(A,B) = d(D,E), and

d(B,C) = 2 d(B,G) = 2 d(E,H) = d(E,F )

and the reasoning in the previous paragraph yields

| 6 CBA| = | 6 GBA| = | 6 HED| = | 6 FED| .

Therefore we have ∆CBA ∼= ∆FED by SAS.

2. Since d(A,B) = d(A,C), d(A,D) = d(A,D) and the bisection condition implies

| 6 DAB| = 1

2
| 6 CAB| = | 6 DAC|

it follows that ∆DAB ∼= ∆DAC by SAS. Therefore we also have d(A,D) = d(B,D), so that D
must be the midpoint of [BC]. Combining the latter with d(A,B) = d(A,C), we see that AD is
the perpendicular bisector of [BC], so that AD ⊥ BC.
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3. By the Isosceles Triangle Theorem we have | 6 PTS| = | 6 PST |. Therefore by the
Supplement Postulate for angle measure we have

| 6 PLT | = 180 − | 6 PTS| = 180 − | 6 PST | = | 6 PSR|

so that ∆PLT ∼= ∆PSR by SAS and the hypothesis d(R,S) = d(L, T ). The triangle congruence
implies that d(P,L) = d(P,R).

We are given the betweenness conditions R ∗S ∗ T , R ∗ S ∗L and R ∗ T ∗L, and from these we
conclude that L ∗T ∗S is also true. Combining L ∗T ∗S and R ∗S ∗T with the distance equations,
we find that

d(L, S) = d(L, T ) + d(T, S) = d(R,S) + d(S, T ) = d(R, T )

and if we combine this with the previously obtained relations we see that ∆RTP ∼= ∆LSP by
SSS.

4. Since C ∗B ∗D and A ∗B ∗E hold, it follows that A and E lie on opposite sides of CD.
Therefore we shall have AC||DE if | 6 ACD| = | 6 CDE|; since B ∈ (CD), the latter is equivalent
to | 6 ACB| = | 6 BDE|.

To prove the final statement, note first that the common midpoint condition implies that
d(A,B) = d(B,E) and d(C,B) = d(B,D). By the Vertical Angle Theorem we also have | 6 ABC| =
| 6 DBE|, and therefore by SAS we have ∆ACB ∼= ∆DBE. The desired equation | 6 ACB| =
| 6 BDE| is an immediate consequence of this.

5. We shall follow the hint and first verify the betweenness relationships A ∗ C ∗ E and
F ∗ C ∗ G. First of all, B ∗ C ∗ D and C ∈ AE imply that B and D lie on opposite sides of AE.
Next, A ∗ F ∗ B and D ∗ G ∗ E imply that B and F lie on the same side of AE and also that D
and G lie on the same side of AE. This means that F and G must lie on opposite sides of AE, and
since C ∈ AE ∩ FG this means that F ∗ C ∗ G must be true. Furthermore, A ∗ F ∗ B, D ∗ G ∗ E
and F ∗ C ∗ G imply that A and E lie on opposite sides of BC.

We can now use the Vertical Angle Theorem to conclude that | 6 BCA| = | 6 DCE|, and there-
fore ∆BCA ∼= ∆DCE by SAS. By the Alternate Interior Angle Theorem, we also know that AB
is parallel to BE.

To conclude tha proof, we can now use the Alternate Interior Angle Theorem again to conclude
that | 6 FAC| = | 6 GEC|, and another application of the Vertical Angle Theorem implies that
| 6 FCA| = | 6 GCE|. Since we are given that d(A,C) = d(C,E), it follows that ∆FAC ∼= ∆GCE
by ASA.

6. Since the angle sum of a triangle is 180 degrees, by the Isosceles Triangle Theorem and
6 BAC = 6 DAE we have

| 6 ABC| = 1

2
(180 − | 6 BAC|) = 1

2
(180 − | 6 DAE|) = | 6 ADE| .

Therefore the Corresponding Angles criterion implies that BC||DE.

7. Let α, β, γ and δ be the measures of 6 BAC, 6 ABC, 6 ACB, and 6 ADB. We know
that d = 130, but for the time being it is simpler to file this away for future use.

By the theorem on angle sums of a triangle we have

1

2
α + 1

2
β + δ = 180 = α + β + γ
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and if we subtract half the second equation from the first and afterwards multiply both sides by
two we obtain

2 δ − γ = 180 .

If we substitute δ = 130 and solve for γ we find that γ = 80.

8. By the Vertical Angle Theorem we have | 6 ABD| = | 6 CBF |, and since | 6 ADB| =
90 = | 6 BCF |, we may apply the “Third Angles Are Equal” theorem to conclude that | 6 DAB| =
| 6 BFC|.

9. If Y is an arbitrary point on L then d(B, Y ) = d(C, Y ) because L is the perpendicular
bisector of [BC]. It follows that d(A, Y ) + d(Y,B) = d(A, Y ) + d(Y,C). The right hand side is
minimized when Y is between A and C, and this happens precisely when Y is the point X where
AC meets L; note that this point is between A and C because A and C lie on opposite sides of
L. There is only one point X ∈ L with these properties, so we know that d(A, Y ) + d(Y,B) =
d(A, Y ) + d(Y,C) > d(A,C) for all other points Y on the line L.

10. The points X,Y,Z are not collinear because a line cannot intersect all three open sides
of a triangle. Also, the betweenness hypotheses imply

d(A,B) = d(A,X) + d(X,B),

d(B,C) = d(B, Y ) + d(Y,C), and

d(A,C) = d(A,Z) + d(Z,C).

Finally, the strong form of the Triangle Inequality (for noncollinear triples) implies that

d(X,Y ) < d(B,X) + d(B, Y ),

d(Y,Z) < d(C, Y ) + d(C,Z), and

d(X,Z) < d(A,X) + d(A,Z).

If we add these we obtain

d(X,Y ) + d(Y,Z) + d(X,Z) < d(B,X) + d(B, Y ) + d(C, Y )+d(C,Z) + d(A,X) + d(A,Z)

and using the betweennes identities we see that the right hand side is equal to d(A,B) + d(B,C)+
d(A < C); thus we have shown the inequality stated in the exercise.

11. We know that D = 1

2
(A + B) and E = 1

2
(A + C), so that d(D,E) is equal to

|D −E| =
∣

∣

1

2
(B − C)

∣

∣; since the latter is equal to 1

2
|B −C|, the conclusion of the exercise follows.

12. Let E be the midpoint of [AB]. Then by the final result in Section I.4 we know that
D − E = 1

2
(C − B). Since E ∈ (AB) and AD 6= AB we know that A, D, E are noncollinear, and

thus by the Triangle Inequality for noncollinear points we have

d(A,D) < d(D,E) + d(A,E) = 1

2

(

d(A,C) + d(A,B)
)

which is the inequality stated in the exercise.

13. Apply the theorem on angle sums of a triangle to the four triangles described in the
hint to obtain the following equations:

| 6 CAB| + | 6 ABC| + | 6 BCA| = 180
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| 6 XAB| + | 6 ABX| + | 6 BXA| = 180

| 6 CAX| + | 6 AXC| + | 6 XCA| = 180

| 6 CXB| + | 6 XBC| + | 6 BCX| = 180

Adding the last three equations, we obtain

| 6 XAB| + | 6 ABX| + | 6 BXA| + | 6 CAX| + | 6 AXC| +

| 6 XCA| + | 6 CXB| + | 6 XBC| + | 6 BCX| = 540 .

Since X lies in the interior of ∆ABC it lies in the interiors of all the angles | 6 CAB|, | 6 ABC|,
| 6 BCA| and therefore we have

| 6 CAB| = | 6 CAX| + | 6 XAB|

| 6 ABC| = | 6 ABX| + | 6 XBC|

| 6 BCA| = | 6 BCX| + | 6 XCA|

If we substitute this into the previous equation we obtain

| 6 CAB| + | 6 ABC| + | 6 BCA| + | 6 AXB| + | 6 AXC| + | 6 XBC| = 540

and if we now use | 6 CAB|+ | 6 ABC|+ | 6 BCA| = 180 and subtract 180 from both sides we obtain

| 6 AXB| + | 6 AXC| + | 6 XBC| = 360

which is the equation stated in the exercise.

14. Let x = d(A,B) = d(D,E). Then by the Pythagorean Theorem we have d(E,F ) =
√

x2 − d(D,F )2 and d(B,C) =
√

x2 − d(A,C)2. If d(E,F ) < d(B,C), then the formulas in the
preceding sentence imply d(A,C) < d(D,F ).

15. By Exercise 12, we know that d(A,C) < d(E,C) < d(B,C); since the larger angle
is opposite the longer side, it follows that | 6 CEA| < | 6 CAE|. On the other hand, the Exterior
Angle Theorem implies that | 6 CEB| > | 6 CAE|, so that | 6 CEB| > | 6 CEA|. Since we also have
| 6 CEB|+| 6 CEA| = 180, it follows that | 6 CEB| > 90 > | 6 CEA|. Therefore 6 CEA is an ACUTE

angle.

16. Suppose we are given numbers a ≤ b ≤ c; then these numbers are consistent with the
strong Triangle Inequality if and only if c < a + b. So if this fails, then there is no triangle whose
sides have the given lengths. In Section III.6 we show that, conversely, if the conditions in the first
sentence hold, then one can realize the numbers as lengths of the sides of some triangle.

(a) Since 1 + 2 = 3, these numbers do not satisfy the strong Triangle Inequality and hence
cannot be the lengths of the sides of a triangle.

(b) Since 4 < 5 < 6 and 4 + 5 = 0 > 6, these numbers are consistent with the Triangle
Inequality.

(c) Since 1 ≤ 15 = 15 and 1 + 15 > 15, it follows that these numbers are consistent with the
Triangle Inequality.
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(d) Since 1 + 5 < 8, these numbers do not satisfy the strong Triangle Inequality and hence
cannot be the lengths of the sides of a triangle.

17. The strong Triangle Inequality implies that if there is a number x such that 10, 15, x
are the lengths of the sides of a triangle, then x + 10 > 15 and x < 10 + 15. There is also the
inequality x + 15 > 10, but it is weaker than the first one. Therefore the conditions on x are that
5 < x < 25.

18. We know that (n + 1)2 = n2 + (2n + 1), so if we can write (2n + 1) = m2, it follows
that n2 +m2 = (n +1)2. Thus there is a right triangle whose sides have lengths n, m and n+ 1 by
the Pythagorean Theorem.

Since there are infinitely many odd positive integers who are perfect squares, it follows that
there are infinitely many choices of n and m such that the preceding holds.

To find all n < 100 which satisfy this condition, it is necessary to find all n < 100 such that
2n + 1 is a perfect square. In other words, we need to find all odd positive integers m ≥ 3 such
that m2 < 200, and this is the set of all odd positive integers ≤ 13. We can retrieve n because it
is equal to 1

2
(m2 − 1). The first few cases are then given as follows:

32 + 42 = 52

52 + 122 = 132

72 + 242 = 252

92 + 402 = 412

112 + 602 = 612

132 + 842 = 852

Of course, this could be continued indefinitely.

19. Apply the Law of Cosines to each triangle. Let y = d(A,C) = d(A,D) and z = d(A,B).
Then we have

d(B,C)2 = y2 + z2 − 2yz cos | 6 CAB|

d(B,D)2 = y2 + z2 − 2yz cos | 6 DAB|

It follows that d(B,C) < d(B,D) if and only if cos | 6 DAB| > cos | 6 CAB|, and since the cosine
function is strictly increasing between 0 and 180, the latter holds if and only if | 6 DAB| > | 6 CAB|,
Therefore we have d(B,C) < d(B,D) if and only if | 6 DAB| > | 6 CAB|, which is the conclusion of
the Hinge Theorem.

20. Before solving the problem, we should note that [1]–[3] are all theorems, while [4] is an
immediate consequence of the Law of Cosines.

(a) By [3] we know that α = 60◦ so that the triangle is equiangular. By [2], this means that
a = b = c. However, in the given data we have a 6= b, so the data are inconsistent and no triangle
with the stated measurements can exist.

(b) Property [1] is satisfied, but [4] is not because

a2 + b2 = 36 + 49 = 85 > 81 = c2

should imply γ < 90◦ and instead we have γ = 93◦.

21. First of all, note that SSA is satisfied for ∆BDC ↔ ∆BDA because we are know that
d(B,D) = d(B,D), we are given that d(B,C) = d(B,A), and we have 6 BDC = 6 BDA because
C ∈ (DA.
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We know that ∆BCD is isosceles because d(B,C) = d(C,D). Now | 6 BCA| = 45◦ because
∆ABC is an isosceles triangle with a right angle at C, and this implies | 6 CBD| = | 6 DBC|; we
shall call this number θ. Also, since A ∗ C ∗ D is true we have

| 6 BCD| = 180◦ − | 6 BCA| = 135◦ .

and since the angle sum for ∆BCD is 180◦ it follows that 135 + 2θ = 180, so that θ = 22.5.

Since C lies in the interior of 6 ABD it follows that

| 6 ABD| = | 6 ABC| + | 6 CBD| = 90◦ + 22.5◦ = 112.5◦

while as before we have | 6 CBD| = 22.5◦. Finally we have | 6 DAB| = | 6 CAB| = 45◦, while our
previous calculations show that | 6 DCB| = 135◦.
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